INSTITUTE OF ENGINEERING AND TECHNOLOGY DEEN DAYAL UPADHYAYA GORAKHPUR UNIVERSITY, GORAKHPUR (दीन दयाल उपाध्याय गोरखपुर विश्वविद्यालय, गोरखपुर)

COURSE STRUCTURE & SYLLABUS

FOR

B. TECH.

Electronics & Communication Engineering

ON

AICTE MODEL CURRICULUM

[Effective from the Session: 2024-25]

Curriculum for Bachelor of Technology ELECTRONICS & COMMUNICATION ENGINEERING

Course structure & Semester-wise credit distribution

A. Structure of Bachelor of Technology (B. Tech) program:

Category	Breakup of Credits
Humanities and Social Sciences including Management courses	13
Basic Science courses	17
Basic Engineering courses including workshops, drawing, basics of Electrical/Electronics/mechanical/computer etc.	19
Department core courses	64
Department elective courses relevant to the chosen specialization/branch	12
Open subjects – Electives from other technical and /or emerging subjects	12
Project work, seminar, and internship in industry or elsewhere	21
Ability Enhancement Courses (AEC) offered by the university	08
Skill Enhancement Courses (SEC) offered by the university	09
Mandatory Non-Credit Courses: Environmental Science & Induction training	(Non-Credit)
Total	175

B. Category of Courses:

Basic Science Courses

S. No.	Course Code	Course Title	Credits
1.	ECHE101	Engineering Chemistry	3+0
2.	ECHE151	Engineering Chemistry Lab	0+1
3.	EPHY101	Engineering Physics	3+0
4.	EPHY151	Engineering Physics Lab	0+1
5.	EMAT101	Engineering Mathematics-I	3+0
6.	EMAT 102	Engineering Mathematics-II	3+0
7.	EMAT 201	Engineering Mathematics-III	3+0
		Total	17

Basic Engineering Courses

S. No.	Course Code	Course Title	Credits
1.	ECE101	Basic Electronics Engineering	3+0
2.	ECE151	Basic Electronics Engineering Lab	0+1
3.	ECE102	Basic Electrical Engineering	3+0
4.	ECE152	Basic Electrical Engineering Lab	0+1
5.	ME101	Engineering Graphics & Design	0+2
6.	CSE101	Programming for Problem Solving	3+0
7.	CSE151	Programming for Problem Solving Lab	0+1
8.	ME102	Workshop Practices	0+2
9.	ME103	Fundamental of Mechanical Engineering and Mechatronics	3+0
		Total	19

S. No.	Course Code	Course Title	Credits
1.	HSM101	Professional Communication	3+0
2.	HSM151	Professional Communication Lab	0+1
3.	HSM201	Managerial Economics	3+0
4.	HSM301	Organization Behavior	3+0
5.	HSM401	Universal Human Values-II: Understanding Harmony and Ethical Human Conduct	3+0
		Total	13

Humanities & Social Sciences Including Management

ECE Department Courses

S. No.	Course Code	Course Title	Credits
1.	ECE201	Electronic Devices	3+0
2.	ECE251	Electronic Devices Lab	0+1
3.	ECE202	Digital Electronics & Logic Design	3+0
4.	ECE252	Digital Electronics & Logic Design Lab	0+1
5.	ECE203	Signals and Systems	3+0
6.	ECE204	Network Analysis and Synthesis	3+0
7.	ECE205	Probability Theory and Stochastic Processes	3+0
8.	ECE206	Analog Circuits	3+0
9.	ECE256	Analog Circuits Lab	0+1
10.	ECE207	Microprocessor & Microcontroller	4+0
11.	ECE257	Microprocessor & Microcontroller Lab	0+1
12.	ECE208	Engineering Electromagnetics	4+0
13.	ECE258	Engineering Electromagnetics Lab	0+1
14.	ECE301	Computer Architecture & Organization	3+0
15.	ECE302	Control Systems	3+0
16.	ECE303	Digital Signal Processing	4 + 0
17.	ECE353	Digital Signal Processing Lab	0+1
18.	ECE304	Analog and Digital Communication	3+0
19.	ECE354	Analog and Digital Communication Lab	0+1
20.	CSE304	Computer Networks	4+0
21.	CSE354	Computer Networks Lab	0+1
22.	ECE305	Embedded Systems	3+0
23.	ECE355	Embedded Systems Lab	0+1
24.	ECE306	Wireless and Mobile Communication	4+0
25.	ECE307	VLSI Design	4+0
26.	ECE357	VLSI Design Lab	0+1
		Total	64

ECE Department Project work, Seminar and Internship in Industry

S. No.	Course Code	Course Title	Credits
1.	ECESI401	Seminar	0+2
2.	ECESI402	Internship	0+2
3.	ECEP201	Micro Project	0+2
4.	ECEP301	Mini Project	0+3
5.	ECEP401	Major Project	0+12
		Total Credits	21

ECE Department Elective Courses

Student has to adopt any one course from the list of each Elective (Duration: 12 Weeks, Credit: 3)

		e Course-1 (Sem-VI)	-	Г.		
S. No.	Course Code	Course Title	SME Name/Dept	Institute	NPTEL	Credit
1.	ECEL301	Information Theory and Coding	Dept. of ECE	IET,DDUGU	NA	3+0
	ECEL302	VLSI Technology	Dept. of ECE	IET,DDUGU	NA	
	ECEL303	Multirate DSP	Prof. R. David Koilpillai	IITM	https://onlinecourses.nptel.a c.in/noc20_ee21/preview	
	ECEL304	Circuit Analysis for Analog Designers	Prof. Shanthi Pavan	IITM	https://onlinecourses.nptel.a c.in/noc22 ee34/preview	
	ECEL305	Optical Fiber Sensors	Prof Balaji Srinivasan	IITM	https://onlinecourses.nptel.a c.in/noc21 ee40/preview	
Depar	tment Electiv	e Course-2 (Sem-VII)		L L	<u> </u>	1
2.	ECEL401	Nano Electronics	Dept. of ECE	IET,DDUGU	NA	
	ECEL402	Speech Processing	Dept. of ECE	IET,DDUGU	NA	3+0
	ECEL403	Microwave Engineering	Prof. Ratnajit Bhattacharjee	IITG	https://onlinecourses.nptel.a c.in/noc23_ee102/preview	
	ECEL404	Principles And Techniques of Modern Radar Systems	Prof. Amitabha Bhattacharya	IITKGP	https://onlinecourses.nptel.a c.in/noc23_ee133/preview	
	ECEL405	Introduction To Wireless and Cellular Communications	Prof. David Koilpillai	IITM	https://onlinecourses.nptel.a c.in/noc23_ee79/preview	
Depar	tment Electiv	e Course-3 (Sem-VII)				
3.	ECEL406	Satellite Communication	Dept. of ECE	IET,DDUGU	NA	3+0
	ECEL407	Antennas and Wave Propagation	Dept. of ECE	IET,DDUGU	NA	
	ECEL408	Fiber Optic Communication Technology	Prof. Deepa Venkitesh	IITM	https://onlinecourses.nptel.a c.in/noc23_ee80/preview	-
	ECEL409	C-Based VLSI Design	Prof. Chandan Karfa	IITG	https://onlinecourses.nptel.a c.in/noc23 cs114/preview	
	ECEL410	Digital Image Processing	Prof. Prabir Kumar Biswas	IITKGP	https://onlinecourses.nptel.a c.in/noc23_ee118/preview	
		e Course-4 (Sem-VIII)				
4.	ECEL411	Wireless Sensor Networks	Dept. of ECE	IET, DDUGU	NA	3+0
	ECEL412	High Speed Electronics	Dept. of ECE	IET, DDUGU	NA	
	ECEL413	Machine Learning for Engineering and science applications	Prof. Balaji Srinivasan and Prof. Ganapathy	IITM	https://onlinecourses.nptel.a c.in/noc19_cs82/preview	
	ECEL414	Optical Wireless Communications for Beyond 5G Networks and IoT	Prof. Anand Srivastava	IIITD	https://onlinecourses.nptel.a c.in/noc23_ee61/preview	
	ECEL415	An Introduction to Artificial Intelligence	Prof. Mausam	IIITD	https://onlinecourses.nptel.a c.in/noc22_cs56/preview	
			Total			12

Note- If required, the Department may also offer suitable additional elective courses (12 week duration or having 3 credits only) based on the available Online mode from SWAYAM (only from NPTEL Domain). Link: <u>https://archive.nptel.ac.in/noc/NPTELSemester.html</u>

у

Department of Electronics and Communication Engineering, Institute of Engineering and Technology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Mandatory Non-Credit (NC) Courses

S. No.	Course Code	Course Title	Credits
1.		Induction Program (3-weeks)	
2.	ENV201	Environment & Ecology	2+0 (NC)

Mandatory Student Induction Program

The Essence and Details of Induction program can also be understood from the 'Detailed Guide on Student Induction program', as available on AICTE Portal. (Link: <u>https://www.aicte-india.org/sites/default/files/Model Curriculum/UG-1/ug-vol1.pdf</u>).

Induction program (mandatory)Three-week durationInduction program for students to be
offered right at the start of the firstPhysical activity

offered right at the start of the first	Creative Arts
year.	Universal Human Values-I
	Literary
	Proficiency Modules
	Lectures by Eminent People
	Visits to local Areas
	Familiarization to Dept./Branch & Innovations

Engineering Open Elective Courses

The student can opt any engineering open elective subject(s) that are offered in a particular semester, except the subject(s) with his/ her own department code.

S. No.	Department	Course Code	Course Title	Credits	
1.	ECE	ECOE01	Introduction to Microcontrollers and Embedded		Engineering
			Systems	3+0	Open
	IT	ITOE01	Introduction to OOP with C++		Elective
	CSE	CSEOE01	Web Technology		Course-1
	ME	MEOE01	Renewable Energy Resources		
2.	ECE	ECOE02	Introduction To MEMs		Engineering
	IT	ITOE02	Introduction to Virtualization and Cloud Computing	3+0	Open
	CSE	CSEOE02	Web Application Development using Python		Elective
	ME	MEOE02	Advanced Manufacturing Techniques		Course-2
3.	ECE	ECOE03	Digital VLSI Design		Engineering
	IT	ITOE03	Cyber Law and Ethics	3+0	Open
	CSE	CSEOE03	Front-End Technologies		Elective Course-3
	ME	MEOE03	Maintenance Engineering and Management		course 5
4.	ECE	ECOE04	Wireless Communication and Networks		Engineering
	IT	ITOE04	Internet of Things	3+0	Open
	CSE	CSEOE04	Back-End Technologies		Elective
	ME	MEOE04	Operation Research		Course-4

Note:

- 1. If required, the student can earn the credit through Online mode from SWAYAM (only from NPTEL Domain) Link: <u>https://archive.nptel.ac.in/noc/NPTELSemester.html</u> offered by the Department.
- **2.** Department may also offer suitable additional engineering open elective courses (12 week duration or having 3 credits only) based on the available Online mode from SWAYAM (only from NPTEL Domain).

AEC and SEC Offered by the University for Implementation of NEP2020 (University Mandatory Course)

The university offers a pool of courses for AEC and SEC to implement NEP2020. The student has to select one course under the SEC category in the first, second, and third semesters (repetition of courses is not allowed). In the same context, the student has to select one course under the AEC category in the first, second, third, and fourth semesters (repetition of courses is not allowed).

As per NEP2020, year-wise credit requirements for the award of "Certificate in Electronics & Communication Engineering", "Diploma in Electronics & Communication Engineering", "Bachelor of Vocation (B. Voc.) in Electronics & Communication Engineering", and "B. Tech. in Electronics & Communication Engineering" are given below:

After	Credit	Credit Distribution	Eligibility of
Year	Requirement		
1 st	47	After earning 47 credits in the first year (22 credits in the first semester and 25 credits in the second semester)	Certificate in <i>Electronics & Communication Engineering</i>
2 nd	93	47 credits from the first year and 46 credits in the second year (22 credits in the third semester and 24 credits in the fourth semester)	Diploma in <i>Electronics & Communication Engineering</i>
3 rd	138	47 credits from the first year 46 credits in the second year and 45 credits in the third year (23 credits in the fifth semester and 22 credits in the sixth semester)	
4 th	175	47 credits from the first year 46 credits in the second year, 45 credits in the third year, and 37 credits in the fourth year (16 credits in the seventh semester and 21 credits in the eighth semester)	Bachelor of Technology (B. Tech.) in Electronics & Communication Engineering

Bachelor of Technology

ELECTRONICS & COMMUNICATION ENGINEERING Course Structure

	S. No.	Category	Course	Course Title	Credits
			Code		
	1.	Basic Science Course	ECHE101	Engineering Chemistry	3+0
	2.	Basic Science Course	EMAT101	Engineering Mathematics-I	3+0
First Year	3.	Humanities and Social Sciences including Management Course	HSM101	Professional Communication	3+0 3+0
	4.	Basic Engineering Course	ECE101	Basic Electronics Engineering	
	5.	Basic Science Course	ECHE151	Engineering Chemistry Lab	0+1
	6.	Humanities and Social Sciences including Management Course	HSM151	Professional Communication Lab	0+1
	7.	Basic Engineering Course	ECE151	Basic Electronics Engineering Lab	0+1
	8.	Basic Engineering Course	ME101	Engineering Graphics & Design	0+2
	9.			Induction Program	
	10.	SEC Course		SEC-x	03
	11.	AEC Course		AEC-x	02
				Total credits	22

			Sem	ester II	
	S. No.	Category	CourseCourse TitleCode		Credits
	1.	Basic Science Course	EPHY101	Engineering Physics	3+0
	2.	Basic Science Course	EMAT 102	Engineering Mathematics-II	3+0
	3.	Basic Engineering Course	CSE101	Programming for Problem Solving	3+0
First	4.	Basic Engineering Course	ECE102	Basic Electrical Engineering	3+0
Year	5.	5. Basic Engineering Course		Fundamental of Mechanical Engineering and Mechatronics	3+0
	6.	Basic Science Course	EPHY151	Engineering Physics Lab	0+1
	7.	Basic Engineering Course	CSE151	Programming for Problem Solving Lab	0+1
	8.	Basic Engineering Course	ECE152	Basic Electrical Engineering Lab	0+1
	9.	Basic Engineering Course	ME102	Workshop Practices	0+2
	10.	SEC Course		SEC-x	03
	11.	AEC Course		AEC-x	02
				Total credits	25

Department of Electronics and Communication Engineering, Institute of Engineering and Technology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

	Semester III										
	S. No.	Category	Course	Course Title	Credits						
			Code								
	1.	Department Course	ECE201	Electronic Devices	3+0						
	2.	Department Course	ECE202	Digital Electronics & Logic Design	3+0						
	3.	Department Course	ECE203	Signals and Systems	3+0						
Second	4.	Department Course	ECE204	Network Analysis and Synthesis	3+0						
Year	5.	Department Course	ECE205	Probability Theory and Stochastic Processes	3+0						
	6.	Department Course	ECE251	Electronic Devices Lab	0+1						
	7.	Department Course	ECE252	Digital Electronics & Logic Design Lab	0+1						
	8.	ENV201	ENV201	Environment & Ecology	2+0 (NC)						
	9.	SEC Course		SEC-x	03						
	10.	AEC Course		AEC-x	02						
				Total credits	22						

	Semester IV										
-	S. No.	Category	Course Code	Course Title	Credits						
-	1.	Department Course	ECE206	Analog Circuits	3+0						
-	2.	Department Course	ECE207	Microprocessor & Microcontroller	4+0						
	3.	Department Course	ECE208	Engineering Electromagnetics	4+0						
	4.	Basic Science Course	EMAT201	Engineering Mathematics-III	3+0						
Second	5.	Humanities and Social Sciences including Management Course	HSM201	Managerial Economics	3+0						
Year	6.	Department Course	ECE256	Analog Circuits Lab	0+1						
	7.	Department Course	ECE257	Microprocessor & Microcontroller Lab	0+1						
	8.	Department Course	ECE258	Engineering Electromagnetics Lab	0+1						
	9.	Department Course	ECEP201	Micro Project	0+2						
ľ	10.	AEC Course		AEC-x	02						
			•	Total credits	24						

Department of Electronics and Communication Engineering, Institute of Engineering and Technology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

				Semester V	
	S. Category No.		Course Code	Course Title	Credits
	1.	Department Course	ECE301	Computer Architecture & Organization	3+0
	2. Department Course		ECE302	Control Systems	3+0
	3.	Department Course	ECE303	Digital Signal Processing	4+0
	4.	Department Course	ECE304	Analog and Digital Communication	3+0
Third	5. Department Course		CSE304	Computer Network	4+0
Year	6.	Humanities and Social Sciences including Management Course	HSM301	Organization Behaviour	3+0
	7.	Department Course	ECE353	Digital Signal Processing Lab	0+1
	8.	Department Course	ECE354	Analog and Digital Communication Lab	0+1
	9.	Department Course	CSE354	Computer Network Lab	0+1
			•	Total credits	23

	C NI		C		C P
	S.No.	Category	Course	Course Title	Credits
	_		Code		
	1.	Department Course	ECE305	Embedded Systems	3+0
	2.	Department Course	ECE306	Wireless and Mobile Communication	4+0
	3.	Department Course	ECE307	VLSI Design	4+0
Third Vaar	4.	Department Course	ECEL [#]	Department Elective Course-1	3+0
Year	5.	Department Elective Course	EOE*	Engineering Open Elective Course-1	3+0
	6.	Department Course	ECE355	Embedded Systems Lab	0+1
	7.	Department Course	ECE357	VLSI Design Lab	0+1
	8.	Department Course	ECEP301	Mini Project	0+3
		·		Total credits	22

Department of Electronics and Communication Engineering, Institute of Engineering and Technology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

			Semes	ster VII	
	S. No.	Category	Course Code	Course Title	Credits
	1.	Department Elective Course	ECEL#	Department Elective Course-2	3+0
	2.	Department Elective Course	ECEL [#]	Department Elective Course-3	3+0
	3.	Department Elective Course	EOE*	Engineering Open Elective Course-2	3+0
	4.	Humanities and Social	HSM401	Universal Human Values-II:	3+0
		Sciences including		Understanding Harmony and Ethical	
		Management Course		Human Conduct	
Fourth	5.	Department Course	ECESI401	Seminar	0+2
Year	6.		ECESI402	Internship	0+2
				Total credits	16
	• EC.	EL [#] : One course to be selected	ed from the Dep	partment Elective Courses	1

• EOE*: Only one Course is to be selected from the list of Engineering Open Elective Courses

	Semester VIII					
	S.No.	Category	Course Code	Course Title	Credits	
	1. Department Elective Course		ECEL [#]	Department Elective Course-4	3+0	
	2. Engineering Open Elective Course		EOE*	Engineering Open Elective Course-3	3+0	
ourth	3.	Engineering Open Elective Course	EOE*	Engineering Open Elective Course-4	3+0	
Year	4.	Department Elective Course (Project)	ECEP401	Major Project	0+12	
		· · · ·		Total credits	21	

• EOE*: Only one course to be selected from the list of Engineering Open Elective Courses

Note: Students who have joined the jobs can earn credits from MOOCS courses in the 7th and 8th semester. (*Subjects may vary according to the availability of courses. In case of any change, HoD and/or Coordinator will issue a separate list of subjects.)

Credit Distribution

Semester	Ι	II	III	IV	V	VI	VII	VIII	Total
Credit	22	25	22	24	23	22	16	21	175

Detailed B. Tech ECE Curriculum Contents

		I	Basic Ele	ectronics Engineering			
Cour	se code	ECE101					
Categ	gory	Basic Engine	eering Co	urse			
Cour	se title	Basic Elect	ronics E	ngineering (Theory)			
Scher	ne and Credits	Credits	3+0				
Pre-r	equisites (if any)	-					
Cours	e Objective:						
To int	troduce the basic cor	cept of Electro	onics engin	neering to the students			
Unit-1	 Unit-1 PN junction diode: Introduction of Semiconductor Materials, Semiconductor Diode, Depletion layer, V-I characteristics, ideal and practical, Transition and Diffusion Capacitance, Diodes breakdown mechanism (Zener and avalanche) Diode Application, Series and Parallel Diode Configuration, Half and Full Wave rectification, Clippers, Clampers, Zener diode as shunt regulator, Voltage-Multiplier Circuits, Light-Emitting Diodes, Liquid-Crystal Displays. 						
Unit-2	Init-2Bipolar Junction Transistors and Field Effect Transistor: Bipolar Junction Transistor, Transistor Construction, Operation, Amplification action. Common Base, Common Emitter, Common Collector Configuration DC Biasing BJTs: Operating Point, Fixed-Bias, Emitter Bias, Voltage-Divider Bias Configuration. Collector Feedback, Emitter-Follower Configuration. Bias Stabilization, CE, CB, CC amplifiers. Field Effect Transistor, Construction and Characteristics of JFETs.09 (Lectures)						
Unit-3	MOSFET (Depletion and Enhancement) Type, Transfer Characteristics. B Operational Amplifiers, Introduction and Block diagram of Op Amp, Ideal & Practical characteristics of Op-Amp, Differential amplifier circuits, Practical Op- Amp Circuits (Inverting Amplifier, Non inverting Amplifier, Unity Gain Amplifier, Summing Amplifier, Integrator, Differentiator). 09 (Lectures)						
Unit-4	Electronic Instrum Block Diagram of frequency using CI Fundamentals of	mentation and Oscilloscope, RO. Introduction Communication, Electromag	Simple C on of Digi ion Engir gnetic spe	rements: Digital Voltmeter, Basic Principle and RO, Measurement of voltage, current phase and tal Storage Oscilloscope. neering, Elements of a Communication System, ectrum and typical applications. Introduction of	09 (Lectures)		

Text Books:

- 1. Robert L. Boylestand / Louis Nashelsky "Electronic Devices and Circuit Theory", Latest Edition, Pearson Education.
- 2. H S Kalsi, "Electronic Instrumentation", Latest Edition, TMH Publication,.
- 3. George Kennedy, "Electronic Communication Systems", Latest Edition, TMH,

Reference Books:

- 1. David A. Bell, "Electronic Devices and Circuits", Latest Edition, Oxford University Press.
- 2. Jacob Millman, C.C. Halkias, Staya brataJit, "Electronic Devices and Circuits", Latest Edition, TMH.
- **3.** David A. Bell, Electronic Instrumentation and Measurements, Latest Edition, Oxford University Press India.

	Basic Electronics Engineering Lab					
Course of	code	ECE151				
Categor	у	Basic Engineering Course				
Course	title	Basic Electronics Engineering Lab (Laboratory)				
Scheme	and Credits	Credits 0+1				
Pre-requ	uisites (if any)	-				
EXP No.		Experiment				
EXP-1	Study of Power	Supply, Active and Passive Components, and Bread Board.				
EXP-2	Study of CRO, I	DSO, Multimeter, and Function generator.				
EXP-3	Study of CRO, Multimeter, and function generator					
EXP-4	To plot V-1 Characteristics of PN Junction Diode.					
EXP-5	To plot V-I char	acteristics of the Zener diode.				
EXP-6	To study the ope	eration of a Half wave rectifier and Measurement of V _{rms} , V _{dc} , and ripple factor				
EXP-7	To study the operation of a Full wave rectifier and Measurement of V _{rms} , V _{dc} , and ripple factor					
EXP-8	To plot the Characteristics of a BJT in a Common Emitter Configuration.					
EXP-9	To plot the Characteristics of a BJT in Common Base Configuration.					
EXP-10	To study Drain Characteristics and Transfer Characteristics of a Junction Fiel Effect Transistor (JFET).					
EXP-11	To study Operational Amplifier as Adder and Subtractor					
EXP-12	To study clippin	g & clamping circuits.				
Note: Ins	tructor may add/o	lelete/modify/tune experiments, wherever he/she feels in a justified manner.				

			Basic E	lectrical Engineering	
Cour	se code	ECE102			
Categ		Basic Engin	eering Co	urse	
-	se title	-	-	ineering (Theory)	
	ne and Credits	Credits	3+0		
	equisites (if any)	-	•••		
	e Objective:				
	understand the ele	ectrical circuit	fundame	entals.	
 At 	tain proficiency in a	analyzing sing	le-phase	AC circuits, exploring resonance phenomena, po	wer factor
	ncepts, and method				
• To	ounderstand how th	ne power supp	oly and lo	ad are balanced, and how to measure power.	
Unit-1				, Circuit Concepts, Concepts of network, Active	09 (Lectures)
				sources, Concept of linearity and linear network,	
				ransformation, Kirchhoff's laws, Loop and nodal	
				ation, AC fundamentals, Sinusoidal, square and	
				tive values, Form and peak factors, Concept of	
U				Ily varying voltage and current.	00 (T +
Unit-2				independent sources): Superposition theorem, Maximum Power Transfer theorem (Simple	09 (Lectures)
	numerical problem		theorem,	Maximum Power Transfer theorem (Simple	
	1	/	-nhase A	C circuits: Analysis of series and parallel RLC	
				& parallel circuits, bandwidth and quality factor;	
				er factor, Concept of power factor improvement	
	and its improvement				
Unit-3	Three-phase AC	circuit: Three	phase sys	stem-its necessity and advantages, Star and delta	09 (Lectures)
				d load, Line and phase voltage/current relations,	
	three-phase power,				
				ments, Construction and working principles of	
				ers & ammeters, Single phase dynamometer	
	multipliers), Single			rs (Simple numerical problems on shunts and	
Unit-4				circuit, circuit analogy between electric and	09 (Lectures)
0111-4					or (Ecclures)
	magnetic circuit, B-H curve, hysteresis and eddy current losses, Magnetic circuit calculation(Series and Parallel).				
			of operatio	on, Construction, EMF equation, Phasor diagram,	
				y (Simple numerical problems) of DC Machine,	
				Fransformer, Single Phase Induction Machine,	
	Three Phase Induct				
				ical power generation, ac and dc transmission	
				ansmission lines and cables, Symmetrical and	
	unsymmetrical faul	lt analysis, Ciro	cuit break	ers	

Text/Reference Books

1. Franklin F. Kuo, "Network Analysis and Synthesis," Wiley India Education, 2nd Ed., 2006.

- 2. Van, Valkenburg, "Network analysis," Pearson, 2019.
- 3. Sudhakar, A., Shyammohan, S. P., "Circuits and Network," Tata McGraw-Hill NewDelhi, 1994.
- 4. A William Hayt, "Engineering Circuit Analysis," 8th Edition, McGraw-Hill Education.
- 5. A. Anand Kumar, "Network Analysis and Synthesis," PHI publication, 2019.

Course Outcomes:

- CO1. Understand basics electrical circuits with nodal and mesh analysis.
- **CO2.** Appreciate electrical network theorems.
- CO3. Apply Laplace transform for steady-state and transient analysis.
- **CO4.** Determine different network functions.
- **CO5.** Appreciate the frequency domain techniques.

	Basic Electrical Engineering Lab					
Course co	ode	ECE152				
Category		Departme	nt Course			
Course tit	tle	Basic Ele	ctrical Eng	ineering Lab (Laboratory)		
Scheme a	nd Credits	Credits	0+1			
Pre-requi	sites (if any)	-				
EXP				Experiment		
No.						
EXP-1	Verification of	Superposition	on theorem			
EXP-2	Verification of	Thevenin's	Theorem an	nd Maximum Power Transfer Theorem.		
EXP-3	Measurement of power and power factor in a single-phase ac series inductive circuit and study improvement of power factor using capacitor					
EXP-4	Study of pheno	omenon of re	sonance in	RLC series circuit and obtain resonant frequency.		
EXP-5	Connection and	d measureme	ent of powe	r consumption of a fluorescent lamp (tube light).		
EXP-6				rcuit by two wattmeter method and determination of its power factor		
	for star as well	as delta con	nected load	l.		
EXP-7	Determination	of paramete	rs of ac sing	gle phase series RLC circuit		
EXP-8	To observe the B-H loop of a ferromagnetic material in CRO.					
EXP-9	Determination of (i) Voltage ratio (ii) polarity and (iii) efficiency by load test of a single-phase transformer					
EXP-10				unt motor by load test		
EXP-11	To study runni	ng and speed	d reversal o	f a three-phase induction motor		
Note: Instr	uctor may add/d	lelete/modify	/tune exper	iments, wherever he/she feels in a justified manner.		

		Ele	ectronics Devices			
Course code	ECE201					
Category	Departme	nt Course				
81	-					
Course title	-	cs Devices	(Theory)			
Scheme and Credits	Credits	3+0				
Pre-requisites (if any)	-					
Course Objective:						
• To introduce the concept						
• To introduce the concept		1 .				
-		-	emiconductors and design resistors.			
			capacitor and MOSFET, their characteristics, and op	perations.		
			nall signal at low and high frequencies.			
• To study the different ty						
			pound semiconductor materials, crystal lattice	9 (Lectures)		
			r physics: Review of quantum mechanics,			
electrons in perio	dic lattices, E	l-k diagram	15.			
Unit-2 Energy bands in	intrinsic and	extrinsic s	silicon, carrier transport, diffusioncurrent, drift	9(Lectures)		
current, mobility	and resistivi	ty, sheet 1	resistance, design of resistors.	, ,		
Unit-3 Generation and r						
P-N junction cha	acteristics, I-	V character	istics, and small signal switching models,			
Avalanche break	Avalanche breakdown, Zener diode, Schottky diode, Photodiodes, solar cell, light emitting					
diodes, semicond	diodes, semiconductor lasers, light emitting materials.					
Unit-4 Transistors: M	OS capacitor	: C-V cha	racteristics; MOSFET: I-V characteristics, and	9 (Lectures)		
small signal mod	els of MOS t	ransistor; E	Bipolar Junction Transistor: I-V characteristics,			
Ebers-Moll mode	el.					

Text /Reference Books:

- 1. G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2014.
- 2. D. Neamen, D. Biswas, "Semiconductor Physics and Devices," McGraw-Hill Education.
- **3.** S. M. Sze and K. N. Kwok, "Physics of Semiconductor Devices," 3rd edition, John Wiley&Sons, 2006.
- 4. C.T. Sah, "Fundamentals of Solid State Electronics," World Scientific Publishing Co. Inc,1991.
- 5. Y. Tsividis and M. Colin, "Operation and Modeling of the MOS Transistor," Oxford univ.press, 2011.
- 6. Muhammad H. Rashid, "Electronic Devices and Circuits," Cengage publication, 2014.

Course Outcomes:

- **CO1.** Understand the principles of semiconductor Physics.
- CO2. Understand and utilize the mathematical models of semiconductor junctions.
- CO3. Understand carrier transport in semiconductors and design resistors.
- CO4. Utilize the mathematical models of MOS transistors for circuits and systems.
- CO5. Analyze and find application of special purpose devices.
- CO6. Understand working of basic electronics lab equipment.
- **CO7.** Understand working of Diode, BJT, FET, MOSFET and apply the concept in designing of amplifiers.

Electronics Devices Lab									
Course co	de	ECE251							
Category		Department Course							
Course tit	tle	Electronics Devices Lab (Laboratory)							
Scheme a	nd Credits	Credits 0+1							
Pre-requi	sites (if any)	-							
EXP	(v)	Experiment	Virtual Lab Link						
No.		-							
EXP-12	multimeter, an	ab Equipment and Components: CR Id function generator, power supply- activity nents and bread board.	ve, <u>/vlabiitkgpAE/exp1/index.html</u> & <u>https://be-</u>						
			iitkgp.vlabs.ac.in/List%20of%20experime nts.html						
EXP-13		Energy Band Gap of Semiconductor	https://bop-iitk.vlabs.ac.in/exp/energy- band-gap/						
EXP-14	P-N Junction Diode	diode: To study the V-I Characteristics of	a <u>http://vlabs.iitkgp.ernet.in/be/exp5/index.h</u> <u>tml</u>						
EXP-15	11	of PN Junction diode: Half wave rectified of V_{rms} , V_{dc} , and ripple factor.	er- <u>http://vlabs.iitkgp.ernet.in/be/exp6/index.h</u> <u>tml</u>						
EXP-16	11	of PN Junction diode: Full wave rectified of V_{rms} , V_{dc} , and ripple factor.	er- <u>http://vlabs.iitkgp.ernet.in/be/exp7/index.h</u> tml						
EXP-17	Characteristic diode.	s of Zener diode: V-I characteristics of Zen	regulator/						
EXP-18	graphical meas	s of Solar cell: V-I characteristics of solar ce urement of forward and reverse resistance.	<u>∼=360&cnt=1</u>						
EXP-19	regulator.	of Zener diode: Zener diode as volta	regulator/						
EXP-20	•	JT Common Emitter Characteristics	http://vlabs.iitkgp.ernet.in/be/exp11/index. html						
EXP-21	To study the B.	JT Common Base Characteristics	https://be-iitkgp.vlabs.ac.in/exp/common- base-characteristics/						
EXP-22	Studies on BJT	CE Amplifier	https://be-iitkgp.vlabs.ac.in/exp/ce- amplifier/						
EXP-23	characteristics channel and p-	this experiment is to plot (i) the outp and, (ii) the transfer characteristics of an channel MOSFET.	n- <u>iitg.vlabs.ac.in/MOSFET_theory.html</u>						
Note: Instr	uctor may add/d	elete/modify/tune experiments, wherever he/s	he feels in a justified manner.						

			Digital Ele	ctronics & Logic Design		
Course	code	ECE202				
Categor	·y	Departmen	nt Course			
Course	title	Digital El	ectronics &	& Logic Design (Theory)		
Scheme	and Credits	Credits	3+0			
Pre-req	uisites (if any)	-				
Course	Objective:					
• To ir	ntroduce the concept	of digital ar	nd binary sy	vstems		
	nalyze and design M					
				emiconductor memories		
Unit-1				l logic design: Binary codes, code conversion,	9 (Lectures)	
				rgan's theorem, SOP & POS forms, Canonical		
				tabulationmethod. MSI devices like comparators,		
				w & multiplexed display, half and full adders,		
TT •4 0				adder, barrel shifter and ALU.		
Unit-2	1 0	0	0	ke S-R, JK and Master-Slave JK FF, edge triggered	9(Lectures)	
				gn of sequential circuits, ripple and synchronous nes, design of synchronous FSM, algorithmic state		
				is circuits like pulse train generator, pseudo		
	random	Designing	synchronot	is circuits like pulse train generator, pseudo		
	binary sequence ge	nerator clo	ek generatio	on		
Unit-3				ies: TTL NAND gate, specifications, noise margin,	9(Lectures)	
				istate TTL, ECL, CMOS families and their	(
				of programmable logic devices like FPGA, logic		
	implementation using programmable devices.					
Unit-4	Digital to Analag	aanvantara		Veighted resistor, R-2R ladder, resistor string etc.	9 (Lectures)	
01111-4				agle slope, dual slope, successive approximation,	(Lectures)	
				asic concept, practical configurations, application		
	in amplifier, integr		uncuno. D	usic concept, practical configurations, application		
	ADC etc.					

Text/Reference Books:

- 1. R.P. Jain, "Modern Digital Electronics," Tata McGraw Hill, 4th edition, 2009.
- 2. A. Anand Kumar, "Fundamental of Digital Circuits," PHI 4th edition, 2018.
- **3.** W.H. Gothmann, "Digital Electronics- An Introduction to Theory and Practice," PHI, 2nd edition, 2006.
- 4. D.V. Hall, "Digital Circuits and Systems," Tata McGraw Hill, 1989.
- 5. A. K. Singh, "Foundation of Digital Electronics & Logic Design," New Age Int.Publishers.
- 6. Subrata Ghosal, "Digital Electronics," Cengage publication, 2nd edition, 2018

Course outcomes:

- CO1. Design and analyze combinational logic circuits.
- CO2. Design and analyze modular combinational circuits with MUX / DEMUX, Decoder & Encoder
- CO3. Design & analyze synchronous sequential logic circuits.
- CO4. Analyze various logic families.
- CO5. Design ADC and DAC and implement in amplifier, integrator, etc.
- CO6. Design & build mini project using digital ICs.

		Digital Electronics & Log	ic Design Lab
Course cod	le	ECE252	
Category		Department Course	
Course titl	e	Digital Electronics & Logic Design L	ab (Laboratory)
Scheme an	d Credits	Credits 0+1	
Pre-requis	ites (if any)	-	
EXP No.		Experiment	Virtual Lab Link
EXP-1	AND, OR, N gates	nd interpretation of truth table for OT, NAND, NOR, Ex-OR, Ex-NOR	https://de-iitr.vlabs.ac.in/exp/truth- table-gates/
EXP-2		n of the given Boolean function tes in both SOP and POS forms.	http://ebootathon.com/labs/beta/ec/DIGI <u>TAL_SYSTEM_DESIGN_LAB/exp1/si</u> <u>mulation.html</u> & <u>https://www.iitg.ac.in/cseweb/vlab/Digita</u> <u>l-System-Lab/login.php</u> (REQUIRES LOGIN)
EXP-3	To Study and	Verify Half and Full Subtractor	https://de-iitr.vlabs.ac.in/exp/half- full-subtractor/
EXP-4		State tables of RS, JK, T and D flip- AND & NOR gates.	https://de-iitr.vlabs.ac.in/exp/truth-tables-flip-flops/
EXP-5		n and verification of Decoder using	https://de-iitr.vlabs.ac.in/exp/decoder-demultiplexer- encoder/
EXP-6	Implementatio logic gates.	n and verification of Encoder using	https://de-iitr.vlabs.ac.in/exp/decoder-demultiplexer- encoder/
EXP-7	Implementatio	n of 4:1 multiplexer using logic gates.	https://de-iitr.vlabs.ac.in/exp/multiplexer- demultiplexer/theory.html
EXP-8	Implementatio gates.	n of 1:4 demultiplexer using logic	https://de-iitr.vlabs.ac.in/exp/multiplexer- demultiplexer/theory.html
EXP-9	Implementatio IC.	n of 4-bit parallel adder using 7483	https://dld-iitb.vlabs.ac.in/exp/binary-adder- implementation/theory.html
EXP-10	Design, and ve	erify the 4-bit synchronous counter.	https://de-iitr.vlabs.ac.in/exp/4bit-synchronous- asynchronous-counter/theory.html
EXP-11	Design, and ve	erify the 4-bit asynchronous counter.	https://de-iitr.vlabs.ac.in/exp/4bit-synchronous- asynchronous-counter/theory.html
EXP-12		n of Mini Project using digital uits and other components.	
Note: Instru	ctor may add/del	lete/modify/tune experiments, wherever h	ne/she feels in a justified manner.

		Si	gnals and Systems				
Course code	ECE203						
Category	Departmer	nt Course					
Course title	Signals an	d Systems	(Theory)				
Scheme and Credits	Credits	3+0					
Pre-requisites (if any)	-						
Course Objective:							
To introduce the							
			nd time domain.				
			their representations: continuous-time/discrete-time,	9 (Lectures)			
periodic/non-period			nergy/power, deterministic/ random, one				
			used signals (in continuous-time as well as in				
			nit ramp (and their interrelationships), exponential,				
			s on continuous-time and discrete-time signals				
(including transform				11(Lectures)			
-							
			of differential equations using LT, Bilateral LT,				
Regions of converg							
Z-transform (ZT):	One sided a	and Bilatera	ll Z-transforms, ZT of some common signals, ROC,				
	orems, soluti	on of diffe	rence equations using one-sided ZT, s- to z-plane				
mapping.		c					
			nditions of existence of FT, properties, magnitude				
1 I ·	1	rtant FT t	heorems, Parseval's theorem, Inverse FT, relation				
between LT and FT							
			: Definition, properties, inverse DTFT, convergence,				
			een continuous time FT and DTFT. e-invariance and causality, impulse response,	0 (I , a structure)			
			(LTI) systems, unit sample response, convolution	9(Lectures)			
	summation, step response of discrete time systems, stability. convolution integral, signal energy and energy spectral density, signal power and power spectral density, properties of						
power spectral dens			i power and power spectral density, properties of				
			f systems: Analysis of first order and second order	7 (Lectures)			
), continuous-time (CT) system analysis using LT,	(Lectures)			
Laplace Transfer Fu							
	notion- poic	5 and Zeros	•				

Text/Reference books:

- 1.A.V. Oppenheim, A.S. Willsky and I.T. Young, "Signals and Systems," Pearson, 2015.
- 2.R.F. Ziemer, W.H. Tranter and D.R. Fannin, "Signals and Systems Continuous and Discrete," 4th edition, Prentice Hall, 1998.
- 3.B.P. Lathi, "Signal Processing and Linear Systems," Oxford University Press, 1998.
- 4. Douglas K. Lindner, "Introduction to Signals and Systems," McGraw Hill InternationalEdition: 1999.
- 5. Simon Haykin, Barry van Veen, "Signals and Systems," John Wiley and Sons (Asia) Private Limited, 1998.
- 6.V. Krishnaveni, A. Rajeswari, ""Signals and Systems," Wiley India Private Limited, 2012.
- 7. Robert A. Gabel, Richard A. Roberts, "Signals and Linear Systems," John Wiley and Sons, 1995.
- 8.M. J. Roberts, "Signals and Systems Analysis using Transform methods and MATLAB," TMH, 2003.
- 9.J. Nagrath, S. N. Sharan, R. Ranjan, S. Kumar, "Signals and Systems," TMH New Delhi,2001.
- 10. Anand Kumar, "Signals and Systems," PHI 3rd edition, 2018.
- 11. D. Ganesh Rao, K.N. Hari Bhat, K. Anitha Sheela, "Signal, Systems, and StochasticProcesses," Cengage publication, 2018.

Course outcomes:

- CO1. Analyze different types of signals.
- CO2. Analyze linear time-invariant (LTI) systems.
- CO3. Represent continuous and discrete systems in time and frequency domain.
- CO4. Analyze discrete time signals in z-domain.
- CO5. Find the stability of the system using pole-zero diagrams and block diagrams.

			Network	Analysis and Synthesis		
Course	code	ECE204				
Catego	ry	Departmen	nt Course			
Course	title	Network	Analysis a	nd Synthesis (Theory)		
Scheme	and Credits	Credits	3+0			
Pre-req	uisites (if any)	-				
Course	Objective:					
• To	understand the basic	concept of e	electrical ci	rcuits.		
	analyze the Circuits					
	study network Topo			-		
	synthesize passive n				1	
Unit-1				h of network containing voltage & current sources and duality. Network Theorems: Superposition,	9 (Lectures)	
	reciprocity, Thever	nin's, Nortor	n's, Maxim	num power transfer, compensation and Tellegan's		
	theorem as applied	to A.C. circ	uits.			
Unit-2	Review of Laplac	e transform	s, poles ai	nd zeroes, initial and final value theorems, The	9(Lectures)	
	transform circuit, t	he system fi	inction, ste	p and impulse responses, the convolution integral.		
	Amplitude and pl	nase respons	ses. Netwo	ork functions, relation between port parameters,		
				rs, interconnection of two ports.		
Unit-3	Hurwitz polynomials, positive real functions. Properties of real immittance functions, 9(Lectures)					
	synthesis of LC driving point immittances, properties of RC driving point impedances,					
	synthesis of RC impedances or RL admittances, properties of RL impedances and RC admittances.					
Unit-4		and Zeroes (on the stab	ility, Properties of Open Circuit and Short Circuit	9 (Lectures)	
0111-4				nthesis of Y21 and Z21 with 1Ω terminations,	> (Lectures)	
	Introduction to acti			nelesis of 121 and 221 with 132 terminutons,		

Text/Reference Books

- 1. Franklin F. Kuo, "Network Analysis and Synthesis," Wiley India Education, 2nd Ed., 2006.
- 2. Van, Valkenburg, "Network analysis," Pearson, 2019.
- 3. Sudhakar, A., Shyammohan, S. P., "Circuits and Network," Tata McGraw-Hill NewDelhi, 1994.
- 4. A William Hayt, "Engineering Circuit Analysis," 8th Edition, McGraw-Hill Education.
- 5. A. Anand Kumar, "Network Analysis and Synthesis," PHI publication, 2019.

Course Outcomes:

- CO1. Understand basics electrical circuits with nodal and mesh analysis.
- **CO2.** Appreciate electrical network theorems.
- CO3. Apply Laplace transform for steady-state and transient analysis.
- CO4. Determine different network functions.
- CO5. Appreciate the frequency domain techniques.

	Probability Theory and Stochastic Processes				
Course	code	ECE205			
Catego	ry	Departme	nt Course		
Course	title	Probabili	ty Theory	and Stochastic Processes (Theory)	
Scheme	e and Credits	Credits	3+0		
Pre-req	luisites (if any)	-			
Cou	rse Objective:				
	-	concept of]	Probability	Theory and Stochastic Processes	
Unit-1					8 (Lectures)
Unit-2	Discrete random variables, probability mass function, probability distribution function, example random variables and distributions; Continuous random variables, probability density function, probability distribution function, example distributions; Joint distributions, functions of one and two random variables, moments of random variables; Conditional distribution, densities and moments; Characteristic functions of a random				
Unit-3	 variable; Markov, Chebyshev and Chernoff bounds. 3 Random sequences and modes of convergence (everywhere, almost everywhere, probability, distribution and mean square); Limit theorems; Strong and weak laws of large numbers, central limit theorem. 				
Unit-4	Random process.	Stationary		Mean and covariance functions. Ergodicity. TI. Power spectral density.	8 (Lectures)

Text/Reference Books

- 1. H. Stark and J. Woods, ``Probability and Random Processes with Applications to Signal Processing," Third Edition, Pearson Education
- 2. A.Papoulis and S. Unnikrishnan Pillai, "Probability, Random Variables and Stochastic Processes," Fourth Edition, McGraw Hill.
- 3. K. L. Chung, Introduction to Probability Theory with Stochastic Processes, Springer International
- 4. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability, UBS Publishers,
- 5. S. Ross, Introduction to Stochastic Models, Harcourt Asia, Academic Press.F. Kuo, "Network

Course Outcomes:

- **CO1.** Develop understanding of basics of probability theory.
- CO2. Identify different distribution functions and their relevance.
- **CO3.** Apply the concepts of probability theory to different problems.
- CO4. Extract parameters of a stochastic process and use them for process characterization

			A	nalog Circuits	
Course	code	ECE206		8	
Catego	ry	Departmer	t Course		
Course		Analog C	ircuits (Th	heory)	
Scheme	e and Credits	Credits	3+0		
Pre-req	uisites (if any)	-			
Course	Objective:				
•]	To describe and analy	ze the Diode	circuits an	nd basic amplifier models	
	To understand the var				
	To describe the conce				
				ts of Current mirror circuits.	
	To understand the con	1	-	1	
		1	f Op-Amp	and its use in various applications.	
• 7 Unit-1	To design basic active			ge amplifier, current amplifier, trans-conductance	9 (Lectures)
	amplifier and tran stability, various co signal analysis, low	s-resistance onfigurations frequency the etc., design	amplifier. (such as cansistor m n procedu	biasing schemes for BJT and FET amplifiers, bias CE/CS, CB/CG, CC/CD) and their features, small nodels, estimation of voltage gain, input resistance, ure for particular specifications, low frequency	. (,
Unit-2	amplifiers, cascode power efficiency a voltage shunt, curr	amplifier, with a sub- and linearity ent shunt, ef	various cla issues, fee fect of fee	uency response of single stage and multistage asses of operation (Class A, B, AB, C etc.), their edback topologies: Voltage series, current series, edback on gain, bandwidth etc., calculation with n margin and phase margin.	9(Lectures)
Unit-3	Oscillators: Review Wien bridge etc.), Current mirror: Ba minimum sustainal	of the basic LC oscillato sic topology ole voltage	c concept, rs (Hartley and its v (V _{ON}), m	Barkhausen criterion, RCoscillators (phase shift, y, Colpitt, Clapp etc.), non-sinusoidal oscillators. variants, V-I characteristics, output resistance and aximum usable load, differential amplifier: Basic culation of differential gain, common mode gain,	9(Lectures)
Unit-4	design of gain stag Op-Amp application differentiator, sum	es and outpu ons: Review ming amplif	t stages, co of invert fier, precis		9(Lectures)

Text/Reference Books:

- 1. J.V. Wait, L.P. Huelsman and GA Korn, "Introduction to Operational Amplifier theoryand applications," Mc Graw Hill, 1992.
- 2. J. Millman and A. Grabel, "Microelectronics," 2nd edition, McGraw Hill, 1988.
- **3.** P. Horowitz and W. Hill, "The Art of Electronics," 2nd edition, Cambridge University Press, 1989.
- **4.** A.S. Sedra and K.C. Smith, "Microelectronic Circuits," Saunder's College11 Publishing, 4th edition.
- **5.** Paul R. Gray and Robert G. Meyer, "Analysis and Design of Analog Integrated Circuits," John Wiley, 3rd edition.
- 6. Muhammad H. Rashid, "Electronic Devices and Circuits," Cengage publication, 2014.

Course Outcomes:

- CO1. Understand the characteristics of diodes and transistors.
- CO2. Design and analyze various rectifier and amplifier circuits.
- CO3. Design sinusoidal and non-sinusoidal oscillators.
- CO4. Understand the functioning of OP-AMP and design OP-AMP based circuits.
- CO5. Design LPF, HPF, BPF, BSF.
- CO6. Design ADC and DAC.

			Ana	log Circuits Lab	
Course co	ode	ECE256		-	
Category		Departme			
Course ti		Analog (Circuits La	b (Laboratory)	
Scheme a	and Credits	Credits	0+1		
Pre-requi	isites (if any)	-			
	Analog Circuits				
EXP No.	8	Exper	iment		Virtual Lab Link
Exp-1.	BJT Common Em				http://vlabs.iitkgp.ernet.in/be/exp11/index.ht
-					ml
Exp-2.	BJT Common Bas	e Characteri	istics		http://vlabs.iitkgp.ernet.in/be/exp12/index.ht
					<u>ml</u>
Exp-3.	<i>v</i> 1	cy response	e of single	stage RC coupled	https://vlab.amrita.edu/?sub=3&brch=223&si
	amplifier.				<u>m=983&cnt=1</u>
Exp-4.		ntiator and	Integrator	using Operational	http://vlabs.iitkgp.ernet.in/be/exp18/index.ht
	Amplifier				<u>ml</u>
Exp-5.	Frequency Respon	ise of CS Ar	nplifier		http://vlabs.iitkgp.ac.in/psac/newlabs2020/vla
					biitkgpAE/exp6/index.html
Exp-6.	-	ulate of I	RC oscilla	tors for required	https://vlab.amrita.edu/?sub=3&brch=225&si
	frequency				<u>m=996&cnt=1</u>
Exp-7.	Wien bridge oscill	ator using o	perational a	amplifier.	https://ae-iitr.vlabs.ac.in/exp/wein-bridge-
F 0	T 1 · 1		.1 '11	. 1.	oscillator/theory.html
Exp-8.			rtley oscilla	ator and to measure	https://vlab.amrita.edu/?sub=1&brch=201&si
E	its output frequence				<u>m=1137&cnt=3</u>
Exp-9.	frequency.	opius oscilla	ator and to	measure its output	https://vlab.amrita.edu/?sub=1&brch=201&si m=1142&cnt=1
Exp-10.		ate analog t	o digital co	onverter and digital	https://he-coep.vlabs.ac.in/exp/digital-analog-
Ехр-10.	to analog converte		o uigitai oo	converter/theory.html	
Exp-11.			or using or	perational amplifier	https://ae-iitr.vlabs.ac.in/exp/function-
	(sine, triangular ar				generator/
Exp-12.	To study the volta	-	,		https://ae-iitr.vlabs.ac.in/exp/voltage-
12AP-12.	10 study the volta	50 comparat			comparator/
N7 / T		1.0 /		. 1 1/1	e feels in a justified manner.

		Μ	icroproce	essor & Microcontroller			
Course	code	ECE207					
Catego	ry	Departmen	nt Course				
Course	title	Microproc	essor & M	icrocontroller (Theory)			
Scheme	e and Credits	Credits	Credits 4+0				
Pre-req	uisites (if any)	-					
Course	Objective:	•					
				it (8086) microprocessors and an 8-bit (8051) micro			
		ganization an	d their fun	ctions, interfacing an external device with the proce	essors/		
controlle			1		12 (T ()		
Unit-1				tion of Microprocessor and their Classification, ions, Memory, Input & output devices, The 8085	12 (Lectures)		
				ess / Data Bus multiplexing and demultiplexing.			
				ng Diagrams, Logic devices for interfacing,			
				splays, Interfacing input devices, Memory mapped			
	I/O, 8085 Interrupts	s, Classificat	ion of instr	uctions, addressing modes,.			
Unit-2				re, Pin Description, Physical address,	12 (Lectures)		
				essing modes. Peripheral Devices: 8237 DMA			
				interface, 8253/8254 programmable			
				pt controller, 8251 USART and RS232C.			
Unit-3				Computer, Microcontrollers and Embedded	12 (Lectures)		
	Processors, Block Diagram of 8051, PSW and Flag Bits, 8051 Register Banks and Stack,						
	Internal Memory Organization of 8051, IO Port Usage in 8051, Types of Special Function						
		Registers and their uses in 8051, Pins Of 8051. Memory Address Decoding, 8031/51					
		xternal ROM	And RAM	1. 8051 Addressing Modes. Classification of			
TI:4 4	instructions.			Manager Illigenselses Casha manager Vistaal	12 (Lasternas)		
Unit-4				or, Memory Hierarchy, Cache memory, Virtual ng – Pipe line hazards. Features and comparison	12 (Lectures)		
	of 80286, 80386, 80			ng – i ipe nite nazarus. i eatures and comparison			
.	01 00200, 00300, 0	5 100, 1 cilitu					

Text Book:

- 1. Ramesh Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", 5th Edition, Penram International Publication (India) Pvt. Ltd., 2009
- 2. D. V. Hall : Microprocessors Interfacing, TMH (2nd Edition), 2006
- 3. Mazidi Ali Muhammad, Mazidi Gillispie Janice, and McKinlay Rolin D., "The 8051

Microcontroller and Embedded Systems using Assembly and C", Pearson, 2nd Edition, 2006

Reference Books:

- 1. AK Roy & KM Bhurchandi, "Advance Microprocessor and Peripherals (Architecture, Programming & Interfacing)", Tata McGraw Hill Publication.
- 2. Kenneth L. Short, "Microprocessors and programmed Logic", 2nd Ed, Pearson Education Inc., 2003.
- 3. Barry B. Brey, "The Intel Microprocessors, 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, PentiumPro Processor, PentiumII, PentiumIII, Pentium IV, Architecture, Programming & Interfacing", Eighth Edition, Pearson Prentice Hall, 2009.
- 4. Shah Satish, "8051 Microcontrollers MCS 51 Family and its variants", Oxford, 2010
- 5. V. Udayashankara, M.S. Mallikajunaswamy, "8051 Microcontroller Hardware, Software and Applications", McGraw-Hill, 2017

Course Outcomes:

Students are able to

- **CO1.** Recall and apply a basic concept of digital fundamentals to Microprocessor based personal computer system.
- CO2. Identify a detailed s/w & h/w structure of the Microprocessor.
- CO3. Illustrate how the different peripherals are interfaced with Microprocessor.
- CO4. Distinguish and analyze the properties of Microprocessors & Microcontrollers.
- CO5. Analyze the data transfer information through serial & parallel ports.

		Microprocessor & Microcontroller Laboratory					
Course co	ode	de ECE257					
Category		Departmen	nt Course				
Course tit	tle	Micropro	cessor & N	Aicrocontroller Laboratory (Lab)			
Scheme a	nd Credits	Credits	0+1				
Pre-requi	isites (if any)	-					
EXP				Experiment			
No.							
Exp-1.	Write a progra Numbers.	um using 80	85 Microp	rocessor for Decimal, Hexadecimal addition and subtraction of two			
Exp-2.	Write a program	m using 808:	5 Micropro	cessor for addition and subtraction of two BCD numbers.			
Exp-3.	To perform mu	ltiplication a	and division	n of two 8 bit numbers using 8085.			
Exp-4.	To find the larg	gest and sma	llest numbe	er in an array of data using 8085 instruction set.			
Exp-5.	To write a prog	gram to arran	ige an array	v of data in ascending and descending order.			
Exp-6.	To convert give instruction set.	ven Hexade	cimal num	ber into its equivalent ASCII number and vice versa using 8085			
Exp-7.	To write a prog	gram to initia	te 8251 an	d to check the transmission and reception of character.			
Exp-8.	To interface 82 modes.	253 program	mable inte	rval timer to 8085 and verify the operation of 8253 in six different			
Exp-9.	To interface DAC with 8085 to demonstrate the generation of square, saw tooth and triangular wave.						
Exp-10.	Serial communication between two 8085 through RS-232 C port.						
Exp-11.	Write a program of Flashing LED connected to port 1 of the 8051 Micro Controller						
Exp-12.	Write a program to generate 10 kHz square wave using 8051						
Exp-13.	Write a program to show the use of INT0 and INT1 of 8051.						
Exp-14.				display on intelligent LCD display.			
Note: Instr	uctor may add/d	elete/modify	/tune exper	iments, wherever he/she feels in a justified manner.			

		Engineering Electromagnetics					
Course	code	ECE208					
Catego	ry	Department Course					
Course	bourse title Engineering Electromagnetics (Theory)						
Scheme	Scheme and Credits Credits 4+0						
Pre-req	uisites (if any)	-					
Course	Objective:						
		mathematical concepts related to electromagnetic fields.					
		on the concepts of electrostatics and its applications.					
• To	o impart knowledge o	on the concepts of magnetostatics, scalar and vector potential and its applicat	tions.				
	1 0	on the concepts of Faraday's law, induced emf, Maxwell's equations, electro	magnetic				
	aves and Transmissio						
Unit-1		cal, Spherical transformation, Vector calculus: Differential length, area	12(Lectures)				
		rface and volume integrals, Deloperator, Gradient, Divergence of a vector,					
Unit-2		n, Curl of a vector, Stokes's theorem, Laplacian of a scalar.	12(T				
Unit-2		s and Magnetostatic fields: Electric field intensity, Electric field due to	12(Lectures)				
	-	n, Electric flux density, Continuity equation and relaxation time,					
	•	ns, Magneto-static fields, Ampere's circuit law, Maxwell's equation,					
	e	nd vector potential, Magnetic boundary conditions, Faraday's Law,					
		otional electromotive forces, Displacement current, Maxwell's equation					
	in final form.						
Unit-3	dielectrics Plane w	ications: Wave propagation in loss dielectrics, Plane waves in lossless ave in free space. Plain waves in good conductors, Power and the pointing of a plain wave in a normal incidence & Oblique Incidence.	12 (Lectures)				
		in parallel plane waveguide, Analysis of waveguide general approach,					
		guide, Modal propagation in rectangular waveguide, Surface currents on					
	the						
		ield visualization, Attenuation in waveguide.					
Unit-4		es: Equations of Voltage and Current on TX line, Propagation constant	12 (Lectures)				
	and						
		dance, and reflection coefficient and VSWR, Impedance Transformation					
		Low loss Transmission line, Power transfer on TX line, Smith Chart, ansmission lines: Impedance Matching, use transmission line sections as					
	circuit elements.	ansinission miles. Impedance matching, use transmission line sections as					
	enour ciellients.		<u> </u>				

Text Book/ Reference Books:

- 1. MNO Sadiku, "Elements of Electromagnetic', Oxford University Press.
- 2. WH Hayt and JA Buck, "Engineering Electromagnetic", McGraw- Hill Education.
- 3. EC Jordan and KG Balmain Electromagnetic Waves and Radiating Systems, PHI.
- 4. Kraus, John D, and Keith R. Carver. "Electromagnetics", McGraw-Hill.

Course Outcome:

- CO1. Understand the basic mathematical concepts related to electromagnetic fields. .
- **CO2.** Apply the principles of electrostatics to the solutions of problems relating to electric field, boundary conditions and electric energy density.
- **CO3.** Apply the principles of magneto statics to the solutions of problems relating to magnetic field and magnetic potential, boundary conditions and magnetic energy density.
- CO4. Understand the concepts related to Faraday's law, induced emf and Maxwell's equations.
- **CO5.** Apply Maxwell's equations to solutions of problems relating to transmission lines and uniform plane wave propagation.

		Engineering Electromagnetics Lab						
Course cod	e	ECE258						
Category	C	Department Course						
Category Course title								
		Engineering Electromagnetics Lab (Laboratory)						
Scheme and		Credits 0+1						
Pre-requisi		-						
EXP No.		Experiment						
Exp-1.		1.1 Vector addition						
	1.2 Vector proc							
Exp-2.	2.1 Coordinate							
E 2	2.2 Position ve 3.1 Curl of a ve	ctor and distance vector						
Exp-3.	-							
	3.3 Gradient of	e of a vector field						
Evn 4		f electrostatic fields						
Exp-4.		atic electric field						
Exp-5.		f electrostatic fields over multiple dielectrics						
r	5.2 Electric flu							
		oving in different regions						
Exp-6.		single current carrying conductor						
-	6.2 Force betw	een two current carrying conductors						
	6.3 Magnetic v							
Exp-7.	7.1 Variation o	f time varying fields						
Exp-8.	8.1 Velocity of							
	8.2 Visualizatio							
		Nature of Fields						
		in current carrying conductors						
		effect in current carrying conductors						
	8.6 Dispersion 8.7 Polarization							
		i of waves vidance in Medium Interface Air Dielectric						
Exp-9.		phenomenon in transmission line						
Ехр-э.		irrent and power associated with a short-circuited line						
		on line as circuit elements						
Exp-10.		e Electric Modes in a Rectangular Waveguide						
P		e Magnetic Modes in a Rectangular Waveguide						
		de of parallel plate waveguide						
	10.6. Surface C	Current of Rectangular Waveguide (TE10)						
		Current of Rectangular Waveguide (TE11)						
	10.8. Surface C	Current of Rectangular Waveguide (TE32)						
Reference:								
	ww.ee.iitb.ac.in							
2. <u>http://ww</u> 4d21137		nt_lab/vlab/index.php?pg=waveguide/theory&usr=mbgore&enc=ac1a9ee6c40236ce8820						
		-assets.mheducation.com/nt7-mhe-complex-assets/Upload-20190715/InspireScience6-						
	05/index.html	-assets.inneutration.com/nt/-inne-complex-assets/opioad-20190/15/inspirescienceo-						
	n-iitd.vlabs.ac.in	ı/home.html						
		/en/simulations/faraday						
		/en/simulations/charges-and-fields						
		/en/simulations/coulombs-law_						
		/en/simulations/vector-addition-equations						
Note: Instruc	ctor may add/del	lete/modify/tune experiments, wherever he/she feels in a justified manner.						

		Con	nputer Arc	chitecture and Organization		
Course	code	ECE301				
Catego	ry	Departmen	nt Course			
Course	title	Computer	Architectu	re and Organization (Theory)		
Scheme	e and Credits	Credits	3+0			
Pre-req	uisites (if any)	-				
Course	Objective:					
• Di	iscuss the basic conce	epts and con	puter desig	gn methodology.		
	nderstand concepts o					
• Ex	xplain different types	1	0			
Unit-1				vstem Design – System representation, Design	8(Lectures)	
				omponents and PLD, register level design The		
				nts, Processor level design		
Unit-2				damentals, Additional features Data Representation	9(Lectures)	
				loating point numbers. Instruction sets - Formats,		
	Types, Programmir					
Unit-3		1		tic - Addition and subtraction, Multiplication and	11 (Lectures)	
	Division, Floating					
	Control Design: basic concepts - introduction, hardwired control, Micro programmed control					
	-introduction, multiplier control unit, CPU control unit, Pipeline control- instruction					
	pipelines, pipeline performance					
Unit-4	Memory organization: Multi level memories, Address translation, Memory allocation, 8 (Lectures)					
				g, structure vs performance, System Organization:		
	Communication me	ethods- basic	concepts,	bus control. Introduction to VHDL.		

Text Book:

- 1. John P Hayes "Computer Architecture and Organization", 3rd Edition McGraw Hill Publication. (2017)
- 2. M Morris Mano, "Computer System Architecture", 3rd Edition ,Pearson,. (2017)

Reference Books:

- 1. Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Computer Organization and Embedded Systems", McGraw Hill Publication. (2009)
- 2. David A. Patterson and John L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface", Elsevier Publication. (2007)

Course Outcomes: At the end of this course students will demonstrate the ability to:

- CO1. understand basic concepts of system design methodology and processor level design.
- CO2. explain the basics of processor and basic formats of data representation.
- CO3. understand basic concepts of control design and pipeline performance.
- CO4. understand the architecture and functionality of central processing unit.

			(Control Systems				
Course	code	ECE302	ECE302					
Catego	ry	Departmen	Department Course					
Course	title	Control Sy	stems (Th	eory)				
Scheme	e and Credits	Credits	3+0					
Pre-req	uisites (if any)	-						
		e mathemati	cal model	ing, feedback control and stability analysis in Time ar	nd Frequency			
Unit-1								
Unit-2	Stability of Linea data systems, zero- criterion,	r Control S input and as	ymptotic	Bounded-input bounded-output stability continuous stability of continuous data systems, Routh Hurwitz Properties of the Root Loci, Design aspects of the	7(Lectures)			
Unit-3	 Time domain Analysis of Control Systems: Time response of continuous data systems, typical test signals for the time response of control systems, unit step response and time domain specifications, time response of a first order system, transient response of a prototype second order system, Steady-State error, Static and dynamic error coefficients, error analysis for different types of systems. Frequency Domain Analysis: Resonant peak and Resonant frequency, Bandwidth of the prototype Second order system, effects of adding a zero to the forward path, effects of adding a pole to the forward path, polar plot, Nyquist stability criterion, stability analysis with the Bode plot, relative stability: gain margin and phase margin. 							
Unit-4	State-Variable An linear continuous time fur concept of controll	nalysis: Con nctions, diag ability & obs	onalization conalization	state, state variable, state model, state models for n of transfer function, solution of state equations,	8(Lectures)			

Text Book:

- 1. I. J. Nagrath & M. Gopal, "Control System Engineering", 6th Ed. New Age International Publishers, 2018
- 2. B.C. Kuo & Farid Golnaraghi, "Automatic Control Systems", 9th Edition, John Wiley India, 2008

Reference Books:

- 1. Joseph J. Distefano III, Allen R. Stubberud, Ivan J. Williams, "Control Systems", 3rd Edition, TMH, Special Indian Edition, 2010.
- 2. A. Anand Kumar, "Control Systems", Second Edition, PHI Learning private limited, 2014.
- 3. William A. Wolovich, "Automatic Control Systems", Oxford University Press, 2011.

Course Outcomes:

- CO1. Describe the basics of control systems along with different types of feedback and its effect.
- **CO2.** To explain the techniques such as block diagrams reduction, signal flow graph and modelling of various physical systems along with modelling of DC servomotor.
- CO3. Explain the concept of state variables for the representation of LTI system.
- **CO4.** Interpret the time domain response analysis for various types of inputs along with the time domain specifications.
- **CO5.** Distinguish the concepts of absolute and relative stability for continuous data systems along with different methods.
- CO6. Interpret the concept of frequency domain response analysis and their specifications.

			Digita	l Signal Processing			
Course	code	ECE303					
Categor	ry	Departmen	nt Course				
Course	title	Digital Sig	gnal Proces	sing (Theory)			
Scheme	and Credits	Credits	4+0				
Pre-req	uisites (if any)	-					
Course	Objective:						
•	To describe signals i	mathematica	lly and und	derstand how to perform mathematical operations on	signals.		
	To provide knowled						
	To discuss multi rate						
Unit-1				sing: Basic elements of digital signal processing,	12 (Lectures)		
				gnal processing, Technology used for DSP.			
				tion, direct form realization of IIR systems, cascade			
				m realization of an IIR systems, Ladder structures:			
				ample of continued fraction, realization of a ladder			
Unit-2	structure, example			$\mathbf{D} = \mathbf{E}^{1} \mathbf{E}^{1$	12(1		
Unit-2				R) Filter Design: Introduction to Filters, Impulse asformation, All- Pole Analog Filters: Butterworth	12(Lectures)		
				Butterworth and Chebyshev Filters, Frequency			
	Transformations.	Design 01	Digital	Butterworth and Chebyshev Priters, Prequency			
		esponse Filt	er (FIR) I	Design: Windowing and the Rectangular Window,			
				Used Windows (Hamming, Hanning, Bartlett,			
				esigns Using Windows.			
Unit-3				ons, Properties of the DFT, Circular Convolution,	12(Lectures)		
	Linear Convolution.						
	Fast Fourier Transform Algorithms: Introduction, Decimation in Time (DIT) Algorithm,						
				Frequency (DIF) Algorithm.			
Unit-4				ilters: Coefficient quantization error, Quantization	12(Lectures)		
				cle oscillations-dead band effects.			
				roduction, Decimation, Interpolation, Sampling rate			
				lications of MDSP- Subband Coding of Speech			
	signals, Quadrature	e mirror filtei	rs, Advanta	ages of MDSP.			

Text Books:

- 1. John G Prokias, Dimitris G Manolakis, Digital Signal Processing. Pearson, 4th Edition, 2007
- 2. Johnny R. Johnson, Digital Signal Processing, PHI Learning Pvt Ltd., 2009.
- 3. S. Salivahanan, A. Vallavaraj, Digital Signal Processing, TMH, 4th Edition 2017.
- 4. Oppenheim & Schafer, Digital Signal Processing. Pearson Education 2015
- 5. S.K. Mitra, 'Digital Signal Processing-A Computer Based Approach, TMH, 4th Edition.

Course Outcomes: At the end of this course students will demonstrate the ability to:

- CO1. Design and describe different types of realizations of digital systems (IIR and FIR) and their utilities.
- **CO2.** Select design parameters of analog IIR digital filters (Butterworth and Chebyshev filters) and implement various methods such as impulse invariant transformation and bilinear transformation of conversion of analog to digital filters.
- CO3. Design FIR filter using various types of window functions.
- **CO4.** Define the principle of discrete Fourier transform & its various properties and concept of circular and linear convolution. Also, students will be able to define and implement FFT i.e. a fast computation method of DFT.
- **CO5.** Define the concept of decimation and interpolation. Also, they will be able to implement it in various practical applications.

	Digital Signal Processing Lab					
Course co	de	ECE353				
Category		Departmen	nt Course			
Course tit	le	Digital Sig	gnal Proces	sing Lab (Laboratory)		
Scheme an	nd Credits	Credits	0+1			
Pre-requi	sites (if any)	-				
EXP No.	Experiment					
Exp-1.	Introduction to N	/ATLAB an	d or Open	Source Software, Scilab		
Exp-2.	Write a Program sinusoidal and co		ration of b	asic signals such as unit impulse, unit step, ramp, exponential,		
Exp-3.	Implement IIR E	Butterworth a	nalog Low	Pass for a 5 KHz cut off frequency.		
Exp-4.	Verify Hamming	g and Blackı	nan windo	wing techniques.		
Exp-5.	Evaluate 4-point DFT of and IDFT of $x(n) = 1, 0 \le n \le 3; 0$ elsewhere.					
Exp-6.	Verify Linear co		<u> </u>			
Exp-7.	Verify Circular (
Exp-8.	To implement flo	oating point	arithmetic.			
Exp-9.	To study about I	OSP Processo	ors and are	hitecture of TMS320C6713 DSP processor		
Exp-10.	Study of Discret	e Fourier Tra	unsform (D	FT) and its inverse (<i>Through Virtual Lab</i>).		
Exp-11.	Study of FIR filter design using window method: Lowpass and highpass filter (Through Virtual Lab).					
Exp-12.	Study of FIR filter design using window method: Bandpass and Bandstop filter (<i>Through Virtual Lab</i>).					
Exp-13.	Exp-13. Study of Infinite Impulse Response (IIR) filter (Through Virtual Lab).					
References	s: <u>http://vlabs.iitkg</u>	gp.ernet.in/d	<u>sp/</u>			
Note: Instr	uctor may add/dei	lete/modify/t	une experir	nents, wherever he/she feels in a justified manner.		

		Ar	alog and	Digital Communication			
Course	code	ECE304					
Categor	ry	Departmen	nt Course				
Course	title	Analog an	d Digital C	Communication (Theory)			
Scheme	eme and Credits Credits 3+0						
Pre-req	re-requisites (if any) -						
Course	Objective:						
	o understand the basi			•			
				hniques of generation, transmission and reception of	amplitude		
) and phase modulation (PM) signals.			
				on system in presence of noise			
				y and random process for communication application	s.		
		-		d describe Pulse and Digital Modulation techniques.			
	understand the basi						
Unit-1				ion system, communication channels, Need for als, Amplitude Modulation: Double sideband with	9 (Lectures)		
				at Carrier, Single Side Band Modulation, DSB-SC,			
				lators, Vestigial Side Band (VSB), Quadrature			
	Amplitude Modulat						
Unit-2				M Signal, Arbitrary Modulated FM Signal, FM	9(Lectures)		
	Modulators and De	emodulators,	Approxim	nately Compatible SSB Systems, Stereophonic FM			
	Broadcasting		••				
Unit-3				s, Gaussian and white noise characteristics, noise in	8(Lectures)		
				equency modulation systems, pre-emphasis and de-			
	emphasis, threshold effect in angle modulation.						
Unit-4				Pulse Amplitude, Pulse Width Modulation, Pulse	10(Lectures)		
				modulation (PCM), differential pulse code			
				considerations in PCM, Frequency Division			
				digital multiplexers. Digital modulation schemes-			
	phase shift keying phase modulation a			ng, quadrature amplitude modulation, continuous			
	phase modulation a		i sint key	iiig.	I]		

Text/Reference Books:

- 1. Haykin S., "Communications Systems," John Wiley and Sons, 2001.
- 2. Proakis J. G. and Salehi M., "Communication Systems Engineering," Pearson Education, 2002.
- **3.** Taub H. and Schilling D.L., "Principles of Communication Systems," Tata McGraw Hill, 2001.
- 4. Wozencraft J. M. and Jacobs I. M., "Principles of Communication Engineering," JohnWiley, 1965.
- 5. Barry J. R., Lee E. A. and Messerschmitt D. G., "Digital Communication," KluwerAcademic Publishers, 2004.
- 6. Proakis J.G., "Digital Communications',' 4th Edition, McGraw Hill, 2000.
- 7. Abhay Gandhi, "Analog and Digital Communication," Cengage publication, 2015.

Course Outcomes:

- **CO1.** Analyze and compare different analog modulation schemes for their efficiency and bandwidth.
- CO2. Analyze the behavior of a communication system in presence of noise.
- CO3. Investigate pulsed modulation systems and analyze their system performance.
- CO4. Investigate various multiplexing techniques.
- CO5. Analyze different digital modulation schemes and compute the bit error performance.
- **CO6.** Analyze and compare different analog modulation schemes for their modulation factor and power.

	Analog and Digital Communication Lab							
Course co	ode	ECE354						
Category		Departmen	t Course					
Course tit	tle	Analog and	l Digital C	Communication Lab (Laboratory)				
Scheme a	nd Credits	Credits	0+1					
Pre-requi	sites (if any)	-						
EXP No.	Experiment							
Exp-1.	To study DSB/	SSB amplitu	de modul	ation & determine its modulation factor & power in side bands.				
Exp-2.	To study amplit	ude demodu	ation by l	inear diode detector.				
Exp-3.	To study freque	ncy modulat	ion and de	etermine its modulation factor.				
Exp-4.	To study sample	ing and record	nstruction	of pulse amplitude modulation system.				
Exp-5.	To study pulse	amplitude m	odulation.					
			0	ning method				
				nd hold circuit				
Exp-6.	To demodulate the obtained PAM signal by 2nd order LPF.							
Exp-7.	To study pulse width modulation and pulse position modulation.							
Exp-8.	• •			emodulation technique.				
Exp-9.				ulation technique.				
Exp-10.		<u>.</u>		help of fundamental frequency and its harmoniccomponent.				
Exp-11.	v 1		<u> </u>	lator and demodulator.				
Exp-12.			-	lator and demodulator.				
Exp-13.	7 1			and demodulator.				
Exp-14.	Study of single	bit error dete	ection and	correction using hamming code.				
Exp-15.		Study of quadrature phase shift keying modulator and demodulator.						
Exp-16.	To simulate diff	To simulate differential phase shift keying technique using MATLAB/SCILAB software.						
Exp-17.	perform BER ca	lculations.	, ,	technique using MATLAB/SCILAB software (8PSK,16PSK) and				
Exp-18.	Design a front e	end BPSK m	odulator a	nd demodulator.				
Note: Inst				ments, wherever he/she feels in a justified manner.				

			En	nbedded Systems				
Course	code	ECE305						
Catego	pory Department Course							
Course	Embedded Systems (Theory)							
Scheme	e and Credits	Credits	3+0					
Pre-req	uisites (if any)	-						
Course	Objective:							
	5			udents to understand embedded-system programming	g and apply			
	at knowledge to desi							
Unit-1				hat is Embedded Systems? – the classification of	9(Lectures)			
	-		-	as of the embedded systems - Structural units in				
			•	nnologies - DMA - Memory management - Timer				
	and Counter - Reset Circuit, Watchdog Timer, Real Time Clock - Simulators, In-Circuit							
			Debuggers and their role in embedded firmware debugging					
Unit-2		0		of I/O subsystem of the embedded system,	10(Lectures)			
	-			rd, RS422, RS485, Introduction of Controller Area				
	Network (CAN), S	Serial Periph	eral Interf	face (SPI), Inter-Integrated Circuits (I2C), UART,				
	etc.							
				Environment: Objective of Embedded Product				
				ent phases of EDLC, Modelling of EDLC, Issues in				
		0		w Graph, Introduction of state machine model,				
Unit-3				odel, and object-oriented Model.	9(Lectures)			
Unit-3	Real Time Operating System – Based Embedded System Design: Introduction of RTOS,							
	Task, Process & threads, Multiprocessing and Multitasking, Preemptive and non-preemptive scheduling, Task communication, Shared memory, Message passing, Interrupt routines, Inter							
	Process Communic		-					
		· · · · · · · · · · · · · · · · · · ·	2					
Unit-4				, MicroC/OS-II, RT Linux. ment: Design issues and techniques Case Study of	8(Lectures)			
01111-4	•	11	1	on- Smart card System Application.				

Text Books:

- 1. Muhammed Ali Mazidi, Janice Gillispie Mazidi and Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems", Pearson Education, Second edition, 2007.
- 2. Raj Kamal, "Embedded Systems: Architecture, Programming and Design", Second Edition, The McGraw-Hill, 2008.
- **3.** Shibu K V, "Introduction to Embedded Systems", Second Edition, The Tata McGraw Hill Education (India), 2008.

Reference Books:

- 1. Wayne Wolf, "Computers as Components: Principles of Embedded Computer System Design", Elsevier, 2006.
- 2. Michael J. Pont, "Embedded C", Pearson Education, 2007.
- 3. Steve Heath, "Embedded System Design", Elsevier, 2005.

COURSE OUTCOME: *After completion of the course student will be able to:*

- CO1: Understand the basics of embedded system and its structural units.
- **CO2:** Analyze the embedded system specification and develop software programs.
- CO3: Evaluate the requirements of the programming embedded systems, related softwarearchitecture.
- **CO4:** Understand the RTOS based embedded system design.
- **CO5:** Understand all the applications of the embedded system and designing issues.

			Embe	dded Systems Lab			
Course co	ode	ECE355	ECE355				
Category		Department	Course				
Course ti	tle	Embedded S	Systems	s Lab (Laboratory)			
Scheme a	nd Credits	Credits	0+1				
Pre-requi	sites (if any)	-					
EXP No.	Experiment						
Exp-1.	Digital FIR filter	design and sin	nulation				
Exp-2.	Fixed point Impl	ementation of I	Digital F	IR Filter			
Exp-3.	MCU-DAC inter	facing and gen	eration o	of ramp wave			
Exp-4.	Interfacing of AI	DC and data tra	snfer by	software polling, study of aliasing			
Exp-5.	ADC triggering	hrough timer(C	On Chip	Timer)			
Exp-6.	Interrupt driven data transfer from ADC						
Exp-7.	Implementation of Digital FIR Filter on 8051 Microcontroller						
Exp-8.	LCD - MCU interfacing and displaying a string						
Exp-9.	Keyboard-MCU interfacing take a input from keypad and display on LCD						
Exp-10.	Stepper Motor C	ontrol Using A	TMEGA	A-16 Microcontroller			
Exp-11.		1	-	mber on the matrix.			
Exp-12.	Interfacing 4x4 s	witch matrix w	ith the n	nicrocontroller			
Exp-13.	Implementation of Hopfield network in C to recognize a simple ASCII character.						
Exp-14.	Implementation of Hopfield Network on ATMEGA-16 microcontroller						
Exp-15.	Serial Communication between micro controller and PC						
Exp-16.	Temperature con	trol using ATm	nega16				
Note: Instr	uctor may add/del	ete/modify/tune	e experin	nents, wherever he/she feels in a justified manner.			

		v	Vireless an	d Mobile Communication				
Course	code	ECE306	ECE306					
Catego	ry	Department Course						
Course	-	Wireless a	Wireless and Mobile Communication (Theory)					
Scheme	e and Credits	Credits	4+0					
Pre-req	uisites (if any)	-		1				
	Objective:							
		to understa	nd mobile o	communication principles and to study the recent tren	ds adopted			
	cellular systems and							
Unit-1	Wireless Commun				12(Lectures)			
				ion fundamentals. General Model of Wireless				
				gnals, Cellular Infrastructure, Cellular System				
				tems, Operation of Cellular Systems, Channel				
				Assignment strategies, Handoff Strategies Cellular				
				Channel and Radio Communication, Free Space				
				Losses, Fading in Land Mobile Systems, Multipath				
				requency, Shadowing; Wireless Channel Modeling:				
				cian Fading Channel, Nakagami Fading Channel,				
				annel Modeling: Stochastic, Flat Fading, Wideband				
	Time-Dispersive C							
Unit-2	Spread Spectrum				12(Lectures)			
				ers; Spread Spectrum Modulation, Pseudo-Noise				
				tion Mechanisms, DSSS and FHSS Systems, Time				
				ulticarrier Modulation Techniques, Zero Inter				
				hniques, Detection Strategies, Diversity Combining				
				nold Combining, Equal Gain Combining, Maximum				
	Estimation.	Spatial L	iversity a	and Multiplexing in MIMO Systems, Channel				
Unit-3	Equalization and	Multiple A	00551		12(Lectures)			
Unit-5				ilters, Adaptive Equalizers, Zero Forcing	12(Lectures)			
				and related algorithms; Multiplexing and				
				MA, OFDMA, SC- FDMA, IDMA Schemes				
				Schemes, RAKE Receiver; Multiple Access for				
				tted ALOHA, CSMA and their versions;				
				altiple Access Schemes.				
Unit-4	Cellular Networks		i Dubeu Ivit		12(Lectures)			
			mmunicati	ion, General Packet Radio Service, Edge	-()			
				95 to CDMA 2000, Wireless Local Loop, IMT				
	0.			LTE), Mobile Satellite Communication.				
	Other Wireless No		(-	···				
			Networks,	Bluetooth, Wi-Fi Standards, WiMax Standards, Li-				
				ommunication, Mobile data networks, Wireless				
				& 5G and concept of NGN.				
Tart Daal		-		*				

Text Books:

1. T.S. Rappaport, "Wireless Communication-Principles and practice", Pearson Publications, Second Edition.

2. Upena Dalal, "Wireless Communication and Networks", Oxford Press Publications, first edition.

3. T L Singal, "Wireless Communications", McGraw Hill Publications, 2010.

Reference Books:

- 1. Andrea Goldsmith, "Wireless Communications", Cambridge University Press, 2005.
- 2. S. Haykin & M. Moher, "Modern wireless communication", Pearson, 2005.

Course Outcomes: At the end of this course students will demonstrate the ability to:

- **CO1.** Express the basic knowledge of mobile radio & cellular communication fundamentals and their application to propagation mechanisms, path loss models and multi-path phenomenon.
- CO2. Analyze the performance of various voice coding and diversity techniques.
- **CO3.** Apply the knowledge of wireless transmission basics to understand the concepts of equalization and multiple access techniques.
- **CO4.** Examine the performance of cellular systems being employed such as GSM, CDMA and LTE using various theoretical and mathematical aspects.
- **CO5.** Express basic knowledge of Mobile Adhoc networks and the existing & upcoming data communication networks in wireless and mobile communication domain.

Institute of Engineering and Technology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

VLSI Design						
Course code		ECE307				
Catego	ry	Department Course				
Course	Ţ.	VLSI Design (Theory)				
Scheme	e and Credits	Credits 4+0				
Pre-req	uisites (if any)	-				
	Objective:					
		e of electronic devices and circuits which covers basic theories and tea	chniques of			
	VLSI design.		•			
Unit-1	5					
Unit-2						
Unit-3	 Combinational MOS Logic Circuits: Introduction, CMOS Logic Circuits, Complex Logic Circuits and CMOS Transmission Gates (Pass Gates). Sequential MOS Logic Circuits: Introduction, Behavior of Bistable Elements, Clocked Latch and Flip-Flop Circuits, CMOS D-Latch and Edge Triggered Flip-Flop. Dynamic CMOS Design: Introduction, Basic Principles of Pass Transistor Circuits, Synchronous Dynamic Circuit Techniques, Dynamic CMOS Circuits. 					
Unit-4	Semiconductor M Static Random Acc Design For Test Observability, Ad	Iemories: Introduction, Dynamic Random Access Memory (DRAM), cess Memory (SRAM), Nonvolatile Memory, Flash Memory, rability: Introduction, Fault Types and Models, Controllability and Hoc Testable Design Techniques, Scan-Based Techniques, Built-In Selfiques and Current Monitoring I _{DDQ} Test	12(Lectures)			

Text Book:

- 1. Sung-Mo Kang & Yosuf Leblebici, "CMOS Digital Integrated Circuits: Analysis & Design", Mcgraw Hill, 4th Edition.
- 2. Neil H.E.Weste, David Money Harris, "CMOS VLSI Design A circuits and Systems Perspective" Pearson, 4th Edition.
- 3. D. A. Pucknell and K. Eshraghian, "Basic VLSI Design: Systems and Circuits", PHI, 3rd Ed., 1994.

Reference Books:

- 1. R. J. Baker, H. W. Li, and D. E. Boyce, "CMOS circuit design, layout, and simulation", Wiley-IEEE Press, 2007.
- 2. J. Rabaey, A. Chandrakasan, and B. Nikolic, "Digital integrated circuits- A design perspective". Prentice Hall
- 3. M. Abramovici, M.A. Breuer and A.D. Friedman, "Digital Systems and Testable Design", Jaico Publishing House.

- 1. Express the concept of VLSI design MOS Transistors and CMOS circuits
- 2. Analyze mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits and delay study.
- 3. Design and analyze various combinational & sequential circuits based on CMOS technology.
- 4. Examine different semiconductor memories used in present days technology.
- 5. Interpret faults in digital circuits, Fault Models and various Testing Methodologies.

	VLSI Design Lab				
Course code	ECE357				
Category	Department Course				
Course title	VLSI Design Lab				
Scheme and Credits	Credits 0+2				
Pre-requisites (if any)	-				
Note: A minimum of ten experi	iments from the following should be performed				
Part-A (PSPICE Experime	ents)				
Transistor Modeling a					
e	ters for MOSFET transistors.				
Exp-1. Si ice parameter Exp-2. Transient Analy					
Exp-2. Transient Analysis (V	•				
	C Analysis of NAND Gate using CMOS inverter.				
-	ysis of NOR Gate inverter and implementation of XOR gate using NOR gate.				
Exp-5. Transfert Analysis of NOR Gate inverter and imperientation of XOR gate using NOR gate. Exp-6. To design and perform transient analysis of D latch using CMOS inverter.					
Exp-0. To design and perform the transient analysis of D laten using CMOS inverter.					
	quency response of Common Source amplifiers.				
· ·	quency response of Source Follower amplifiers Timing				
Exp-10. MOSFET base					
-	d Voltage-controlled oscillators				
Part B : HDL (using VHD	<u>L program module & verilog Module)</u>				
	imulation of Full Adder using VHDL program module				
Exp-13. Design and Si	imulation of 4x1 MUX using VHDL program module				
	imulation of BCD to Excess-3 code using VHDL program module				
Exp-15. Design and Si	imulation of 3 to 8 decoder using VHDL program module				
E 1(D - 10'	imulation of JK Flip-flop using VHDL program module				
Exp-16. Design and Si					

Institute of Engineering and Technology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Course code ECEP201 Category Department Course Course title Micro Project	Micro Project					
Course title Micro Project	CEP201					
	Department Course					
	Micro Project					
Scheme and Credits Credits 0+2						
Pre-requisites (if any) -						

Guidelines:

The micro-project is a team activity having 3-4 students in a team. This is electronic circuit building and testing for developing real life small electronic applications. The microproject may be complete hardware or hardware with a small programming aspect. It should encompass electronics components, devices, analog or digital ICs, micro controller etc. Micro Project should cater to a small system required in laboratory or real-life application. Based on comprehensive literature survey/ need analysis, the student shall identify the title and define the aim and objectives of Micro-project.

Course Outcomes:

At the end of the micro project, students will demonstrate the ability to:

- CO1. Identify and define a problem statement from the requirements raised from literature survey /need analysis.
- CO2. Build and Test electronic circuits/prototype for developing real life small electronic applications.
- CO3. Work in teams, write comprehensive report and effective presentation of the project work.
- CO4. Rapid prototyping which will lead them towards entrepreneurship.

	Mini Project					
Course code ECEP301						
Category Department Course						
Course title	se title Mini Project					
Scheme and Credits	Credits 0+3					
Pre-requisites (if any) -						

The mini project is a team activity having 3-4 students in a team. This is electronic product design work with a focus on electronic circuit design. The mini project may be complete hardware or a combination of hardware and software. Mini Project should cater to a small system required in laboratory or real life. It should encompass components, devices, analog or digital ICs, micro controllers with which functional familiarity is introduced. Based on comprehensive literature survey/ Industry requirements analysis, the student shall identify the title and define the aim and objectives of the mini project.

Students are expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and submit the proposal within the first week of the semester. The student is expected to exert on design, development, and testing of the proposed work as per the schedule.

The layout should be made using CAD based PCB simulation software. Due consideration should be given for power requirements of the system, mechanical aspects for enclosure and control panel design. Completed mini project and documentation in the form of mini project report is to be submitted at the end of semester

Major Project					
Course code	ECEP401				
Category	Department Course				
Course title	Major Project				
Scheme and Credits	Credits 0+12				
Pre-requisites (if any)					
The object of Major Project v	work is to enable the student to extend further the investigative study taken up under				
ECEP401, either fully theoret	ical/practical or involving both theoretical and practical work, under the guidance of a				
Supervisor from the Departm	ent alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is				
expected to provide good train	ning for the student(s) in R&D work and technical leadership. The assignment to				
normally include:					
1. In depth study of the topic assigned in the light of the Report prepared;					
2. Review and finalization of the Approach to the Problem relating to the assigned topic;					
3. Preparing an Action Plan for conducting the investigation, including teamwork;					
4. Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;					
5. Final develop	ment of product/process, testing, results, conclusions and future directions;				
6. Preparing a p	aper for Conference presentation/Publication in Journals, if possible;				

7. Preparing a Dissertation in the standard format for being evaluated by the Department.

8. Final Seminar Presentation before a Departmental Committee.

ECE Department Elective Courses Detailed Syllabus

Information Theory and Coding							
Course	code	ECEL301					
Catego	ry	Departmen	t Elective (Course			
Course	title	Information	n Theory a	nd Coding (Theory)			
Scheme	e and Credits	Credits	3+0				
Pre-req	uisites (if any)	-					
Course	Objective:						
				rmation theory and coding in the context of communi	cation theory		
-	d its significance in						
Unit-1				Entropy, Joint Entropy & Conditional Entropy,	8(Lectures)		
				and their relationship, Chain Rules for Entropy,			
	Introduction and applications of Jensen's Inequality, Log Sum Inequality, Data-						
	Processing Inequality, Fano's Inequality. Asymptotic Equipartition Property (AEP) Theorem.						
Unit-2	Consequences of the AEP: Data Compression techniques, High-Probability Sets and the						
0	Set Data Compression: types of Codes, Optimal Codes and Optimal Code Length, Kraft						
	Inequality: Basics and its use in Uniquely Decodable Codes, Huffman Codes and its						
	Optimality, Shannon-Fano-Elias Coding technique.						
Unit-3							
			el Coding	g Theorem, Channel capacity Theorem, Jointly			
	Typical Sequences.						
	Block Codes: Introduction, Single-parity check codes, Product codes, Repetition codes,						
	Hamming codes, Minimum distance of block codes, Soft-decision decoding, Automatic-						
Unit-4	repeat-request schemes. Linear Block codes: Definition of linear Block Codes, Generator matrices, Standard 9(Le						
Unit-4	array, Parity-check matrices, Error detection and correction.						
	Convolution codes: Encoding convolutional codes, Generator matrices for						
	convolutional codes, Generator polynomials for convolutional codes, Graphical						
				Viterbi Algorithm, Binary Cycle Codes, BCH			
	codes. RS codes, 0			-			

Text Books:

1. Bose, Information Theory, Coding and Cryptography, McGraw-Hill Education, 3rd Edition, (2016).

2. Joy A. Thomas, Thomas M. Cover, "Elements of information theory", Wiley-Interscience; 2nd edition (July 18, 2006).

3. S. Gravano, "Introduction to Error Control Codes" OUP Oxford (24 May 2001).

4. Robert B. Ash, "Information Theory", Dover Publications (November 1, 1990).

5. Todd k Moon, "Error Correction Coding: Mathematical Methods and Algorithms" Wiley, 2005.

Reference Books:

1. Simon Haykin, "Digital communication", John Wiley.

2. Ranjan Bose, "ITC and Cryptography", Tata McGraw-Hill.

3. Roberto Togneri, Christopher J.S deSilva, "Fundamentals of Information Theory and

Coding Design", CRC Press.

Course Outcomes: At the end of this course students will demonstrate the ability to:

CO1. Explain each block involved in digital communication thoroughly with applications.

CO2. Apply the knowledge of basic concepts of probability and entropies to analyze the behavior of a communication system.

CO3. Analyze the use of source coding and evaluating all the techniques of source coding.

- CO4. Examine the significance of channel coding and evaluating all available techniques of channel coding and decoding with challenges.
- **CO5.** Examine various error control coding techniques.

			V	LSI Technology		
Course	code	ECEL302				
Catego	ry	Departmen	t Elective (Course		
Course	title	VLSI Tech	nology (Tł	neory)		
Scheme	e and Credits	Credits	3+0			
Pre-req	uisites (if any)	-				
-	Objective:					
	•	mental conc	epts releva	nt to VLSI fabrication.		
				ous VLSI fabrication techniques.		
Unit-1	Introduction To I	C Technolo	gy: SSI, N	ISI, LSI, VLSI Integrated Circuits. Crystal Growth	8(Lectures)	
	and Wafer Preparation: Electronic Grade Silicon, Czochralski Crystal Growth, Silicon Shaping, Processing Considerations. Wafer Cleaning Technology - Basic Concepts, Wet cleaning, Dry cleaning					
Unit-2	Epitaxy: Vapor-P	hase Epitaxy	, Molecul	ar Beam Epitaxy, Silicon on Insulators, Epitaxial	9(Lectures)	
	Evaluation.					
	Oxidation: Growth Kinetics, Thin Oxides, Oxidation Techniques and Systems, Oxides					
Unit-3	Properties Optical Lithography, Electron beam lithography, Photo masks, Wet Chemical Etching					
0111-5					II (Lectures)	
	Deposition Processes of Polysilicon, Silicon Dioxide, Silicon Nitride; Models of diffusion in solids, Fick's 1-Dimensional diffusion equation, Diffusion of Impurities in Silicon and					
	Silicon Dioxide, Diffusion Equations, Diffusion Profiles, Diffusion Furnace, Solid, Liquid					
	and Gaseous Sources, Ion-Implantation: Ion-Implantation Technique, Range Theory,					
	Implantation Equipment.					
Unit-4	Metallization: Metallization Application, Metallization Choices, Physical Vapor Deposition,					
	Vacuum Deposition					
				Types, Packaging Design Consideration, VLSI		
	Assembly Technol	ogies, Packa	ge Fabricat	tion Technologies, CMOS fabrication steps.		

Text Books:

1. S. M. Sze, "VLSI Technology", McGraw Hill Publication, 2nd Edition 2017

2. S.K. Ghandhi, "VLSI Fabrication Principles", Willy-India Pvt. Ltd, 2008

Reference Books:

- 1. J. D. Plummer, M. D. Deal and Peter B. Griffin, "Silicon VLSI Technology: Fundamentals, Practice and Modeling", Pearson Education Publication, 2009
- 2. Stephen A. Campbell, "Fabrication Engineering at the Micro and Nano scale", Oxford University Press, 2013

- CO1. Interpret the basics of crystal growth, wafer preparation and wafer cleaning.
- **CO2.** Evaluate the process of Epitaxy and oxidation.
- CO3. Differentiate the lithography, etching and deposition process.
- CO4. Analyze the process of diffusion and ion implantation.
- CO5. Express the basic process involved in metallization and packaging.

			N	ano Electronics	
Course	code	ECEL401			
Catego	ry	Departmen	t Elective (Course	
Course	title	Nano Elect	ronics (The	eory)	
Scheme	e and Credits	Credits	3+0		
Pre-req	uisites (if any)	-			
	Objective: ide students with know	owledge and	understand	ling of physical background and applications of nano	electronics.
Unit-1					9(Lectures)
Unit-2	Materials for nanoelectronics: Semiconductors, Crystal lattices: bonding in crystals, Electron energy bands, Semiconductor heterostructures, Lattice-matched and pseudomorphic heterostructures, Inorganic nanowires, Organic semiconductors, Carbon nanomaterials: nanotubes and fullerenes.				
Unit-3Shrink-down approaches: Introduction, CMOS Scaling, MOS Electrical characterization, Non classical MOSFETs: overview and carrier transport in NanoMOSFETs, Silicon on Insulator (SOI) MOSFET, FINFETs, Vertical MOSFETs, limits to scaling, system integration limits (interconnect issues etc.)9(Lecture)				9(Lectures)	
Unit-4	Resonant Tunnelin	g Diode, Co	ulomb dots	, Quantum blockade, Single electron transistors, , Graphene, atomistic simulation	9(Lectures)

Text/ Reference Books:

- 1. G.W. Hanson, Fundamentals of Nanoelectronics, Pearson, 2009.
- 2. W. Ranier, Nanoelectronics and Information Technology (Advanced ElectronicMaterial and Novel Devices), Wiley-VCH, 2003.
- 3. K.E. Drexler, Nanosystems, Wiley, 1992.
- 4. J.H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge UniversityPress, 1998.
- 5. C.P. Poole, F. J. Owens, Introduction to Nanotechnology, Wiley, 2003.
- 6. Introduction to Nano Science and Technology by S.M. Lindsay.
- 7. Supriyo Dutta -Lessons from Nanoscience: A Lecture Note Series, World Scientific (2012).
- 8. Supriyo Dutta -- Quantum Transport- Atom to Transistor, Cambridge University Press (2005).
- 9. Introduction to Nanoelectronics : Science, Nanotechnology, Engineering & Applications by Vladimir.V.Mitin.
- 10. NPTEL Link: https://nptel.ac.in/courses/117108047

Course Outcomes:

At the end of the course, students will demonstrate the ability to:

- CO1. Understand various aspects of nano-technology and the processes involved in makingnano components and material.
- CO2. Leverage advantages of the nano-materials and appropriate use in solving practical problems.
- CO3. Understand various aspects of nano-technology and the processes involved in makingnano components and material.
- CO4. Leverage advantages of the nano-materials and appropriate use in solving practical problems.

			Sp	beech Processing	
Course	Course code				
Catego	ry	Departmen	t Elective (Course	
Course	title	Speech Pro	cessing (T	heory)	
Scheme	and Credits	Credits	3+0		
Pre-req	uisites (if any)	-			
	Objective:	• . • .•			
				processing oriented to human-computer interaction.	
Unit-1	Digital models for speech signals : speech signal production mechanism, acoustic phonetics, acoustic theory to produce speech signals, lossless tubemodels, and digital models for speech signals.				6(Lectures)
Unit-2					10(Lectures)
	time energy and average magnitude, short time average zero crossing rate, discrimination				
	between speech & silence, pitch period estimation using parallel processing, short time				
	autocorrelation function & AMDF, pitch period estimation using autocorrelation function.				
Unit-3	it-3 Short time Fourier analysis: Definition and properties, design of filter banks,				
	implementation of	filter bank s	summation	method using FFT, spectrographic displays, pitch	
	detection, analysis by synthesis phase, vocoder.				
	Homomorphic speech processing: Homomorphic system for convolution, complex				
	cepstrum of speech, pitch detection using Homomorphic processing,				
	formant estimation, Homomorphic vocoder.				
Unit-4	Linear predictive coding of speech: Basic principles of linear predictive analysis, the				
	autocorrelation method, computation of the gain for the model, solution of LPC equations for				
	auto correlation method, prediction error and normalized mean square error, frequency				
				rediction error relation of linear predictive analysis	
				various speech parameters, synthesis of speech	
	from linear predict	ive paramete	ers, applica	tion of LPC parameters.	

Text Book:

- 1. R. L. Rabiner & R.W. Schafer, "Digital Processing of speech signals", Pearson Education, 2004.
- 2. B. Gold and Nelson Morgon, "Speech and audio signal processing", Wiley India Edition, 2006.

Reference Books:

- 1. D O Shaughnessy, "Speech Communication: Human and Machine" May 29, 2012.
- 2. J L Flanagan, "Speech Analysis, Synthesis and Perception" October 11, 2012.
- 3. John Coleman, "Digital Speech Processing: Synthesis, and Recognition" by Sadaoki Furui, "Introducing Speech and Language Processing" 2nd edition, November 17, 2000.

- **CO1.** Describe the mechanism of speech production & acoustic phonetics, the acoustic theory of speech production, lossless tube models.
- **CO2.** Explain time dependent processing of speech, short time energy and average magnitude, short time average zero crossing rate.
- CO3. Design filter banks, implement filter banks and perform summation method using FFT.
- **CO4.** Evaluate homomorphic system for convolution, complex cepstrum of speech, pitch detection using Homomorphic processing.
- **CO5.** Interpret the basic principles of linear predictive analysis, the autocorrelation method, computation of the gain for the model, solution of LPC equations.

			Satel	lite Communication			
Course	Course code ECEL406						
Catego	ry	Department	Elective (Course			
Course	title	Satellite Con	nmunicat	ion (Theory)			
Scheme	e and Credits	Credits	3+0				
Pre-req	uisites (if any)	-		•			
Course	Objective:						
				systems for satellite communication.			
Unit-1	Communication, Applications of	Types of Sat Satellite co	tellite, Ty ommunic	unication: History, Overview of Satellite ypes of Orbit, Satellite services, Advantages & ation, Satellite Life phases, Space Debris, eo-stationary satellites.	9(Lectures)		
Unit-2	Orbital Mechanics: Orbital Mechanics, Kepler's Three laws of Planetary Motion, Developing the Equations of the orbit, Look Angle Determination, Earth Stations, Orbital Perturbations, Orbital effects in Communication system performance. Satellite Sub-systems: Seven segments of Satellite communication, Attitude and Orbit control systems, Telemetry, Tracking and command control system, Power supply system.						
Unit-3	 Unit-3 Satellite Link Design: Basic transmission theory, System noise temperature and G/T ratio, Design of down link and uplink, Design of satellite links for specified C/N. Introduction to Various Satellite Systems: VSAT, Direct broadcast satellite television and radio, Satellite navigation and the Global positioning systems, GPS position location principle, GPS receivers and codes, Satellite Signal Acquisition, GPS navigation Message, GPS Signal Levels, Timing Accuracy, GPS Receiver Operation. 						
Unit-4	Launchers & A Vehicles, Advand Decision making f Indian Satellite	ced launchin for Space, Int Systems:	g tech l er Satelli History	es: Mechanism of Satellite launching, Launch ike Space X, Intelligent Testing, Control and te Link. and Overview of Indian Satellite System, d Technology Vehicle.	9(Lectures)		

Text Books:

- 1. B.Pratt, A.Bostian, "Satellite Communications", Wiley India, 2nd Edition,2006.
- 2. D. Roddy, "Satellite Communications", TMH, 4th Edition, 2001.
- 3. Digital Satellite Communications/ Tri T. Ha./ McGraw-Hill, 2nd Edition
- 4. D.C. Agrawal, Satellite communication, Khanna Publishers; 7th Edition.

- CO1. Define and list the benefits of satellite communication.
- **CO2.** Demonstrate orbital mechanics principles of satellite communication systems and solve problems related to it.
- CO3. Describe a satellite link and identify ways to improve the link performance.
- CO4. Classify new technologies of satellite communication systems as per given specifications.
- CO5. Examine advanced technologies of satellite launching and describe the Indian satellite system.

	Antennas and Wave Propagation							
Course	Course code		ECEL407					
Category		Department Elective Course						
Course	•	<u> </u>		Propagation (Theory)				
Scheme	e and Credits	Credits	3+0					
Pre-req	uisites (if any)	-						
Course	Objective:							
				g their principles of radiation, their basic parameters,	their general			
	pes, and those comm							
Unit-1				ntenna Parameters, Patterns, Beam Area (or Beam	8(Lectures)			
				Beam Efficiency, Directivity D and Gain G,				
				rtures, Effective Height, The radio Communication				
			Dipole, Si	ngle-to-Noise Ratio(SNR), Antenna Temperature,				
Unit-2	Antenna Impedanc		rrove Intr	roduction, Point Source, Power Theorem and its	10(Lectures)			
Unit-2				diation Intensity, Arrays of Two Isotropic Point	10(Lectures)			
		s, Non-isotropic but Similar Point Sources and the Principle of Pattern ication, Pattern Synthesis by Pattern Multiplication, Linear Arrays of n Isotropic						
		of Equal Amplitude and Spacing, Linear Broadside Arrays with Non-						
	uniform Amplitude Distributions. General Considerations.							
	Electric Dipoles, Thin Liner Antennas and Arrays of Dipoles and Apertures: The Short							
	Electric Dipole, Th	e Fields of a	1 Short Dip	oole, Radiation Resistance of Short Electric Dipole,				
				ance of $\lambda/2$ Antenna, Array of Two Driven $\lambda/2$				
				Case, Horizontal Antennas Above a Plane Ground,				
			ne Ground	l, Yagi-Uda Antenna Design, Long-Wire Antennas,				
	folded Dipole Ante				9(Lectures)			
Unit-3	The Loop Antenna: Design and its Characteristic Properties, Application of Loop							
	Antennas, Far Field Patterns of Circular Loop Antennas with Uniform Current, Slot							
	Antennas, Horn Antennas, Helical Antennas, The Log-Periodic Antenna, Micro strip							
	Antennas. Paflactor Antennas: Elat Sheet Paflactors, Corner Paflactors, The Parabola General							
	Reflector Antennas: Flat Sheet Reflectors, Corner Reflectors, The Parabola-General Properties A Comparison Between Parabolic and Corner Reflectors. The Paraboloidal							
	Properties, A Comparison Between Parabolic and Corner Reflectors, The Paraboloidal Reflector, Patterns of Large Circular Apertures with Uniform Illumination, Reflector Types							
	(summarized), Fee							
Unit-4				Reflection, Space Wave and SurfaceWave.	9(Lectures)			
				Field Strength Relation, Effects of Imperfect Earth,	, ,			
	Effects of Curvatur			-				
				ctural Details of the ionosphere, Wave Propagation				
				of Sky Waves by ionosphere, Ray Path, Critical				
				th and Skip Distance, Relation Between MUF and				
	the Skip Distance,	Multi-Hop P	ropagation	, Wave Characteristics.				

Text Book:

1. John D Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antennas and Wave Propagation", Tata McGraw Hill Publication.

Reference Books:

1. A. R. Harish, M. Sachidananda, "Antennas and Wave Propogation", Oxford University Press.

2. Edward Conrad Jordan and Keith George Balmain, "Electromagnetic Waves and RadiatingSystems", PHI Publication.

- 3. A. Das, Sisir K. Das, "Microwave Engineering", Tata McGraw Hill Publication.
- 4. C.A. Balanis, Antenna Theory Analysis and Design, John Wiley, 1982.
- 5. R.E. Collin, Antennas and Radio Wave Propagation, McGraw Hill, 1985.
- 6. R.C. Johnson and H. Jasik, Antenna Engineering Handbook, McGraw ill, 1984.
- 7. I.J. Bahl and P. Bhartia, Micro Strip Antennas, Artech House, 1980.
- 8. R.K. Shevgaonkar, Electromagnetic Waves, Tata McGraw Hill, 2005

Course Outcomes:

At the end of the course, students will demonstrate the ability to:

- CO1. Understand the properties and various types of antennas.
- CO2. Analyze the properties of different types of antennas and their design.

			Wirel	ess Sensor Networks		
Course code ECEL411						
Catego	ry	Departmen	t Elective (Course		
Course	title	Wireless Se	ensor Netw	vorks (Theory)		
Scheme	e and Credits	Credits	3+0			
Pre-req	uisites (if any)	-				
Course	Objective:	1				
Tł	nis course covers the	challenges a	nd the late	st research results related to the design and managem	ent of	
W	ireless sensor networ	ks (WSNs).			•	
Unit-1	Introduction to Sensor Networks, unique constraints and challenges, Advantage of Sensor				10(Lectures)	
	Networks, Applications of Sensor Networks, Types of wireless sensor networks.					
	Mobile Ad-hoc Networks (MANETs) and Wireless Sensor Networks, Enabling technologies forWireless Sensor Networks. Issues and challenges in wireless sensor networks					
Unit-2	Routing protocols, MAC protocols: Classification of MAC Protocols, S-MAC Protocol, B-					
	MACprotocol, IEEE 802.15.4 standard and ZigBee,					
	Dissemination pro	tocol for lar	ge sensor	network. Data dissemination, data gathering, and		
	datafusion; Quality	of a sensor	network; R	eal-time traffic support and security protocols.		
Unit-3	Design Principles for WSNs, Gateway Concepts Need for gateway, WSN to Internet 8(Lectur					
	Communication, an	Communication, and Internet to WSN Communication.				
Unit-4	Single-node archite	ecture, Hard	vare comp	onents & design constraints,	8(Lectures)	
	Operating systems	and execution	on environi	ments, introduction to TinyOS and nesC.		

Text/Reference Books:

- 1. Waltenegus Dargie , Christian Poellabauer, "Fundamentals Of Wireless Sensor Networks Theory And Practice", By John Wiley & Sons Publications ,2011
- 2. Sabrie Soloman, "Sensors Handbook" by McGraw Hill publication. 2009
- 3. Feng Zhao, Leonidas Guibas, "Wireless Sensor Networks", Elsevier Publications, 2004
- 4. Kazem Sohrby, Daniel Minoli, "Wireless Sensor Networks": Technology, Protocols and Applications, Wiley-Inter science
- 5. Philip Levis, And David Gay "TinyOS Programming" by Cambridge University Press2009

Course Outcomes:

At the end of the course the students will be able to

- CO1. Design wireless sensor networks for a given application
- CO2. Understand emerging research areas in the field of sensor networks
- CO3. Understand MAC protocols used for different communication standards used in WSN
- CO4. Explore new protocols for WSN.

			High	Speed Electronics	
Course	code	ECEL412			
Category		Department Elective Course			
Course	title	High Speed Electronics (Theory)			
Scheme	e and Credits	Credits 3+0			
Pre-requisites (if any)		-			
Course	Objective:				
	he course deals with gital and analogue do	•	nd design o	f high speed electronic systems and interconnects in b	both the
Unit-1	packages, vias, tra delivery, methodol system noise; No	aces, connec logies for de bise Analys	tors; non- sign of hig is: Source	lk and nonideal effects; signal integrity: impact of ideal return current paths, high frequency power gh speed buses; radiated emissions and minimizing is, Noise Figure, Gain compression, Harmonic tion, Dynamic range	10(Lectures)
Unit-2	frequency) RF Amplifier De	esign, Stabi r Amplifiers	lity, Low , Class A,	sive devices (models), Active (models, low vs high Noise Amplifiers, Broadband Amplifiers (and B, AB and C, D E Integrated circuit realizations, r output stages	9(Lectures)
Unit-3		sion, Downc	onversion,	Conversion gain and spurious response.	8(Lectures)
Unit-4		sembly: Surf	face Moun	ols for PCB design, Standard fabrication, Microvia t Technology, Through Hole Technology, Process	9(Lectures)

Text/Reference Books:

- 1. Stephen H. Hall, Garrett W. Hall, James A. McCall "High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices", August 2000, Wiley-IEEE Press
- 2. Thomas H. Lee, "The Design of CMOS Radio-Frequency Integrated Circuits", CambridgeUniversity Press, 2004, ISBN 0521835399.
- 3. Behzad Razavi, "RF Microelectronics", Prentice-Hall 1998, ISBN 0-13-887571-5.
- 4. Guillermo Gonzalez, "Microwave Transistor Amplifiers", 2nd Edition, Prentice Hall.
- 5. Kai Chang, "RF and Microwave Wireless systems", Wiley.
- 6. R.G. Kaduskar and V.B.Baru, Electronic Product design, Wiley India, 2011

Course Outcomes:

At the end of the course, students will demonstrate the ability to:

- CO1. Understand significance and the areas of application of high-speed electronics circuits.
- CO2. Understand the properties of various components used in high speed electronics
- CO3. Design High-speed electronic system using appropriate components.

ECE Open Elective Courses

Detailed Syllabus

	Introduct	ion to Microcontrollers and Embedded Systems		
Cours	se Code	ECOE01		
Course Title		Introduction to Microcontrollers and Embedded Systems		
Numb	per of Credits	3+0		
Prere	quisites	NONE		
		mpart knowledge on basics of Microcontrollers and Embedded Sy	stems and	
their ap	plications.			
Unit		Topics	Lectures	
I	Microprocessors, ember processors, Harvard and language, Architecture of 8051 internal arch organization, Program Programming, Timer serial communication.	nbedded system: Introduction to Microcontrollers and dded versus external memory devices, CISC and RISC Von Neumann Architecture, 8051 microcontrollers-Assembly f 8051, Registers, Addressing Modes, Instruction Set. nitecture and programming: I/O ports, memory ns showing use of I/O Pins, Interrupts, Interrupt and counters, Serial Communication, Programming of	9	
II	Embedded System, A system, Design Param Hardware fundamenta sink and Source, Cust	vanced concept in embedded system: Introduction: application of Embedded System, Embedded operating eters of embedded and its Significance, Design life cycle, ls, Digital circuit parameter, O.C and Tristate outputs, I/O tom single purpose processor Optimization, FSMD, data purpose Processor and ASIP'S	9	
III	Introduction to oper Introduction to RTOS system services, Me architecture), 80386, 8	ating system and basics of higher embedded system: 5, Tasks, Data, Semaphores and shared data, Operating ssage queues, Mailboxes, Advanced processor (Only 0486, ARM (References)	9	
IV	microcontroller: Mic access (DMA), Arbitra protocols and wireless	sics and interfacing of various devices the proprocessor interfacing I/O addressing, direct memory ation, multilevel bus architecture, serial protocol, parallel protocol, Real world interfacing: LCD, Stepping motor, hbuttons, Keyboard, Latch connection, PPI.	9	

Text Books

- 1. Embedded system Design-Frank Vahid/ Tony Givargis. John Willey
- 2. Microcontroller (Theory and applications) Ajay V Deshmukh, Tata , McGraw-Hill
- 3. An Embedded Software Primer-David E.Simon, Pearson Education

Reference Books:

- 4. The 8051 Microcontroller and embedded systems-Muhammad Ali Mazidi and Janice Gillispie.
- 5. Microcontrollers (Architecture, Implementation & Programming) Kenneth Hinz, DanielTabak, Tata McGraw-Hill
- 6. 8051 Microcontrollers & Embedded Systems 2nd edition Sampath Kr. Katson books

Course outcomes

At the end of the course student will be able

- **CO-1.** Understand various Embedded system related concepts, Memory classification, 8051 architecture and its Instructions.
- CO-2. Demonstrate the programming of I/O, Timers, Serial communication and Interrupt of 8051.
- **CO-3.** Differentiate types of embedded processor and their use in embedded system.
- **CO-4.** Remember the application of RTOS and its various services in embedded systems such as Semaphores, Mailbox. Architecture of high-end processor.
- CO-5. Learn various Communication protocol and demonstrate interfacing of
- CO-6. microcontroller with various components such as LCD, motor, stepper motor and pushbuttons.

Institute of Engineering and Technology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

		Introduction To MEMs		
Course	Code	ECOE02		
Course	Title	Introduction To MEMs 3+0 NONE		
Numbe	r of Credits			
Prereq	uisites			
-	learning Objective:			
1.		t of MEMS, Mechanics of Beam and Diaphragm Structures, Air	r Damping	
	and Electrostatic Actuation.			
2.	Know the knowledge of The	rmal Effects and the Applications of MEMS in RF.		
Unit		Topics	Lectures	
	Introduction to MEMS: MEMS Fabrication Technologies, Materials and Substrates for			
		nachining, Characteristics, Sensors/Transducers, Piezoresistance		
	Effect, Piezoelectricity, Piezor			
		phragm Structures: Stress and Strain, Hooke's Law. Stress and		
		ress, Strain in a Bent Beam, Bending Moment and the Moment		
		Beam Structures Under Weight, Bending of Cantilever Beam		
	Under Weight.		9	
	Air Damping: Drag Effect of a Fluid: Viscosity of a Fluid, Viscous Flow of a Fluid, Drag			
	Force Damping, The Effects of Air Damping on Micro-Dynamics. Squeeze-film Air			
		s for Squeeze-film Air Damping, Damping of Perforated Thick		
		ng: Basic Equations for Slide-film Air Damping, Couette-flow		
	Model, Stokes-flow Model.		0	
		ectrostatic Forces, Normal Force, Tangential Force, Fringe	9	
		of Mechanical Actuators: Parallel-plate Actuator, Capacitive Voltage Driving: Step Voltage Driving, Negative Spring Effect		
	and Vibration Frequency.	voltage Driving: Step voltage Driving, Negative Spring Effect		
		re coefficient of resistance, Thermo-electricity, Thermocouples,	9	
	Thermal and temperature sens		9	
		RF: MEMS Resonator Design Considerations, One-Port		
		Modeling Vertical Displacement Two-Port Microresonator		
	Modeling, Micromechanical R			

Text Books

- 1. G. K. Ananthasuresh, K. J. Vinoy, S. Gopalakrishnan, K. N. Bhat and V. K. Atre, "Micro and smart systems", Wiley India, 2010.
- 2. S.M. Sze, "Semiconductor Sensors", John Wiley & Sons Inc., Wiley Interscience Pub.
- **3.** M.J. Usher, "Sensors and Transducers", McMillian Hampshire.
- 4. RS Muller, Howe, Senturia and Smith, "Micro sensors", IEEE Press

Course outcomes

At the end of the course student will be able

- **CO1.** Understand the Basic concept of MEMS Fabrication Technologies, Piezoresistance Effect, Piezoelectricity, Piezoresistive Sensor.
- CO2. Explain Mechanics of Beam and Diaphragm Structures.
- **CO3.** CO3: Understand the Basic concept of Air Damping and Basic Equations for Slide-film Air Damping, Couette-flow Model, Stokes-flow Model.
- CO4. Know the concept of Electrostatic Actuation. CO5: Understand the applications of MEMS in RF

		Digital VLSI Design		
Course Code		ECOE03		
Course T	itle	Digital VLSI Design		
Number of Credits 3+0				
Prerequis	Prerequisites NONE			
Course L	earning Objective			
To impart	knowledge on basics of VLSI Desi	gn and Digital Integrated Circuits.		
Unit		Topics	Lectures	
I	case timing analysis, overview density and Moore's law, VLS Delay definitions, sheet resistan Interconnect Parameters: Resis influence, lumped RC Model, th model, Linear Delay Model, Log	stance, Inductance, and Capacitance, skin effect and its ne distributed RC Model, transient Response, RC delay	9	
	considerations in dynamic desi logic, np-CMOS logic, problems	ign, charge sharing, cascading dynamic gates, domino in single-phase clocking, two phase non-overlapping OS Logic Circuits, Layout design		
Ш	non-volatile memories, flash n	amic Random Access Memories (DRAM), Static RAM, nemories, Pipeline Architecture. Low – Power CMOS verview of Power Consumption, Low – Power Design	9	
IV	Modeling at the Logic Level, Fur Level of Modeling. Design for	ts in digital circuits. Modeling of faults, Functional nctional Modeling at the Register, Structural Model and Festability, Ad Hoc Design for Testability Techniques, y, Introduction to Built-in-self-test (BIST) Concept.	9	

Text Book:

1. Sung-Mo Kang & Yosuf Leblebici, "CMOS Digital Integrated Circuits: Analysis & Design", Mcgraw Hill, 4th Edition.

2. Neil H.E.Weste, David Money Harris, "CMOS VLSI Design – A circuits and Systems Perspective" Pearson, 4th Edition.

3. D. A. Pucknell and K. Eshraghian, "Basic VLSI Design: Systems and Circuits", PHI, 3rd Ed., 1994.

Reference Books:

1. R. J. Baker, H. W. Li, and D. E. Boyce, "CMOS circuit design, layout, and simulation", Wiley-IEEE Press,2007.

2. M. Abramovici, M.A. Breuer and A.D. Friedman, "Digital Systems and Testable Design", Jaico Publishing House.

- CO1. Express the concept of VLSI design and CMOS circuits and delay study.
- **CO2.** Analyze mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits.
- CO3. Design and analyze various combinational & sequential circuits based on CMOS technology.
- **CO4.** Examine power logic circuits and different semiconductor memories used in present day technology.
- CO5. Interpret faults in digital circuits, Fault Models and various Testing Methodologies.

	Wirele	ss Communication and Networks		
Course Code Course Title		ECOE04		
		Wireless Communication and Networks		
Num	ber of Credits	3+0		
Prer	equisites	NONE		
Cour	rse Learning Objective			
To in	npart knowledge on basics of Wirel	ess Communication and Networks.		
Unit		Topics	Lectures	
Ι	Cellular concepts- Cell structure, frequency reuse, cell splitting, channel assignment, handoff, interference, capacity, power control; Wireless Standards: Overview of 2G 3G, 4G and 5G cellular mobile standards.			
Π	Signal propagation - Propagation mechanism, reflection, refraction, diffraction and scattering, large scale signal propagation and lognormal shadowing. Fading channels-Multipath and small-scale fading- Doppler shift, statistical multipath channel models, narrowband and wideband fading models, power delay profile, average and rms delay spread, coherence bandwidth and coherence time, flat and frequency selective fading, slow and fast fading, average fade duration and level crossing rate. Capacity of flat and frequency selective channels.			
III	Antennas: antennas for mobile te and arrays. Multiple access schemes-FDMA BPSK, QPSK and variants, QAM Receiver structure- Diversity rec	rminal, monopole antennas, PIFA, base station antennas A, TDMA, CDMA and SDMA. Modulation schemes- <i>A</i> , MSK and GMSK, multicarrier modulation, OFDM. eivers- selection and MRC receivers, RAKE receiver, ive, DFE. Transmit diversity Altamonte scheme.	9	
IV	MIMO and space time signal p tradeoff. Performance measures-	Outage, average snr, average symbol/bit error rate. PRS, IS-95, CDMA 2000 and WCDMA, 3G, 4G and 5G	9	

Text Books

- 1. Erik Dahlman, 4G, LTE-Advanced Pro and The Road to 5G
- 2. Sassan Ahmadi, 5G NR: Architecture, Technology, Implementation, and Operation of 3GPP New Radio Standards Hardcover 1 June 2019
- 3. Vijay K. Garg, "Wireless Communication and Networking", Elsevier, Morgan Kaufmann,
- 4. Reprinted 2012.
- 5. Vijay K. Garg, J.E. Wilkes, "Principle and Application of GSM", Pearson Education, Fifth Impression 2008
- 6. T.S. Rappaport, "Wireless Communications Principles and Practice", PHI, II Edition, 2006.
- 7. William Lee," Mobile Cellular Telecommunications: Analog and Digital Systems", McGraw Hill Education

Course outcomes

At the end of the course student will be able

- CO1. Understand cellular concepts and signal propagation in mobile communication.
- CO2. Perform small simulations and plot results on modulation techniques.
- **CO3.** Analysis performance of different generations of mobile communications.
- **CO4.** Solve numerical problems on different multi-access and modulation schemes of mobile communications.