DDU GORAKHPUR UNIVERSITY, GORAKHPUR DEPARTMENT OF MATHEMATICS AND STATISTICS

National Education Policy-2020

Syllabus

of

MATHEMATICS

(Effective from Academic Session 2024-2025)

For

UG Four Year Programme

(UG Honors/UG Honors with Research)

Page 1

UG Four Year Programme (UG Honors/UG Honors with Research)

For Mathematics based on National Education Policy-2020 in Choice Based Credit System (CBCS)

The proposed curriculum is expected to provide the students a good overall knowledge of science covering various aspects. They will not only be able to understand the important techniques but also able to apply some commonly used techniques to other fields.

The course of UG Four Year Programme (UG Honors/UG Honors with Research) For Mathematics will be spread in four years -1^{st} , 2^{nd} , 3^{rd} and 4^{th} Year. Each of which will have two semester examinations and therefore will be eight semester examinations.

Subject Prerequisites

To study this subject a student must had the subject(s) Mathematics in class 12th.

Eligibility for Admission

For UG in Mathematics following candidates are eligible for admission.

Eligibility for admission in this course, the student must have subject Mathematics in class 12th.

Program Duration

The duration of the UG Four Year Programme (UG Honors/UG Honors with Research) For Mathematics the candidates admitted in semester-1st will be of four academic years (8 semesters). There are two regular semesters in an academic year.

Examination and Assessment

As prescribed by the University (as per common ordinance for examination and assessment).

Programme Objectives

The UG Four Year Programme (UG Honors/UG Honors with Research) For Mathematics aims to provide:

a) In-depth of knowledge in Mathematics through understanding of key mathematical concepts, principles, theories and their applications.

b) Inculcate strong interest in learning of mathematics.

c) Evolve broad and balanced knowledge and understanding of definitions, key concepts, principles and theorems in Mathematics.

d) Enable learners/students to apply the knowledge and skills acquired by them during the programme to solve specific theoretical and applied problems in mathematics.

e) Develop in students the ability to apply relevant tools developed in mathematical theory to handle issues and problems in social and natural sciences.

f) Provide students with sufficient knowledge and skills that enable them to undertake further studies in mathematics and related disciplines.

g) Sufficient subject matter competence and enable students to prepare for various competitive examinations such as IIT-JAM, GATE, GRE, UGC-CSIR, NET/JRF and Civil Services Examinations etc.

Framework of Four Year UG Programme (UG Honors)	Framework /	of Four	Year	UG Programme	(UG Hono	rs)
---	-------------	---------	------	---------------------	----------	-----

		M	ajor1 (Subject-1)		Major 2	Minor	SEC/	AEC/	Disseratation/		
	ter	Mathematics			(Subject-2) From Same	(Subject- 3) From Same/	Vocational	CoCurric ular	Research Project/ Field	Total	egree
ear	nes				Faculty	Other Faculty			Work/ Survey	Credits	d D
X	Ser	Course	Course Title	Credits	Credits	Credits	Credits	Credits	Credits		war
		Code									A
		MAT- 101F	Differential Calculus	4							lty
	Ι		and Integral Calculus		6	6	3	2		23	facu ts)
		MAT- 102F	Practical	2							in I
1		MAT-103F	Matrices and	3							icate 46 C
	Π	MAT 104F	Geometry	3	6	6	3	2		23	ertif
		MAT 201E	Algebra	3							Ŭ
	ш	MAT 202F	Mathematical	3	6	6	3	2		23	ulty s)
2		MA 1 - 202F	Methods	U	-						Fac edit
-		MAT- 203F	Differential Equations	3							a in 2 Cr
	IV	MAT- 204F	Mechanics	3	6	6		2	3*	23	molq (9
											Dij
		MAT- 301F	Ring Theory and	4							
			Linear Algebra							•	ee ts)
3 _	V	MAT- 302F	Tensor Analysis	3	10					20	
		MAT- 303F	Differential Geometry	3	-						
		MAT- 304F	Metric Spaces and	4							egre redi
			Complex Analysis								32 C
	VI	MAT- 305F	Numerical Analysis	4	10					20	1:E
			and Operations								
			Research								
		MAT- 306F	Practical	2	-						
		MAT- 401F	Groups and Canonical	4							
			Forms								
		MAT- 402F	Topology	4							
	VII	MAT- 403F	Differential and	4						20	
			Integral Equations								
		MAT- 404F	Complex Analysis	4							rs its)
4		MAT- 405F	Real Analysis	4							Hono Credi
4		MAT- 406F	Fields and Modules	4							UG] 172
		MAT- 407F	Differential Geometry	4							
			of Manifolds								
	VIII	MAT- 408F	Partial Differential	4						20	
		THE TOOL	Equations								
		MAT- 409F	Operations Research	4	4						
		MAT- 410F	Fluid Dynamics	4	-						
1	1		1		1	1	1	1	1	1	1

Note: 1.SEC (Skill Enhancement Course/ Vocational Course).

2. AEC (Ability Enhancement Course/ CoCurricular Course).

3.* The student has to opt one project from subject-1/ subject-2/ subject-3.

	่า	Major1 (Subject-1)		Major 2 (Subject 2)	Minor (Subject 2)	SEC/	AEC/	Disseratation/		ree	
ear	leste		Mathematics		From Same Faculty	(Subject- 5) From Same/ Other Faculty	vocationai	ular	Research Project/ Field Work/ Survey	Total Credits	l Degi
Y	Sem	Course Code	Course Title	Credits	Credits	Credits	Credits	Credits	Credits		Award
		MAT- 101F	Differential Calculus	4							
	Ι		and Integral Calculus		6	6	3	2		23	aculty ts)
		MAT- 102F	Practical	2							in Fa
1		MAT- 103F	Matrices and	3							ate] 6 C
-	Π		Differential Equations		6	6	3	2		23	rtific (4
		MAT- 104F	Geometry	3	-						Ce
	ш	MAT- 201F	Algebra	3							
	111	MAT- 202F	Mathematical	3	6	6	3	2		23	culty ts)
2			Methods								in Fa
		MAT- 203F	Differential Equations	3	6	6		2	3*	23	oma (92.0
	IV	MAT- 204F	Mechanics	3							Dipl
		MAT- 301F	Ring Theory and	4							
	v		Linear Algebra		10					20	
		MAT- 302F	Tensor Analysis	3							
		MAT- 303F	Differential Geometry	3							ree lits)
3		MAT- 304F	Metric Spaces and	4							Deg
	VI		Complex Analysis		10					20	UG 32
		MAT- 305F	Numerical Analysis	4							- 5
			Research								
		MAT- 306F	Practical	2	-						
		MAT- 401F	Groups and Canonical	4							
			Forms								
		MAT- 402F	Topology	4							
	VII	MAT- 403F	Differential and	4						20	ų
			Integral Equations								earc
		MAT- 404F	Complex Analysis	4							Res its)
		MAT- 405F	Real Analysis	4							Vith
		Opt any two co	ourse of the following								ors 72 (
4		MAT- 406F	Fields and Modules	4							Hon (1
		MAT- 407F	Differential Geometry	4							UG]
			of Manifolds								_
	VIII	MAT- 408F	Partial Differential	4 0						20	
			Equations	0							
		MAT- 409F	Operations Research	4							
		MAT- 410F	Fluid Dynamics	4							
		Disseratation/	Research Project	<u> </u>		1	1		1	1	
		MAT- 411F	Disseratation/	10					10		
			Research Project	12					14		

Framework of Four Year UG Programme (UG Honors with Research)

<u>Note:</u> 1.SEC (Skill Enhancement Course/ Vocational Course).
 2. AEC (Ability Enhancement Course/ CoCurricular Course).

3.* The student has to opt one project from subject-1/ subject-2/ subject-3.

SEMESTER-WISE TITLES OF THE PAPERS OF MATHEMATICS AS MAJOR SUBJECT IN UG PROGRAMME							
Year	Course Code	Course Title	Theory/Practical	Credits			
		SEMESTER-I					
	MAT- 101F	Differential Calculus and Integral Calculus	Theory	4+0			
	MAT- 102F	Practical	Practical	0+2			
FIDST		SEMESTER-II					
FIRST	MAT- 103F	Matrices and Differential Equations	Theory	3+0			
-	MAT- 104F	Geometry	Theory	3+0			
		SEMESTER-III					
	MAT- 201F	Algebra	Theory	3+0			
	MAT- 202F	Mathematical Methods	Theory	3+0			
-		SEMESTER-IV					
SECOND	MAT- 203F	Differential Equations	Theory	3+0			
	MAT- 204F	Mechanics	Theory	3+0			
SEMESTER-V							
	MAT- 301F	Ring Theory and Linear Algebra	Theory	4+0			
	MAT- 302F	Tensor Analysis	Theory	3+0			
	MAT- 303F	Differential Geometry	Theory	3+0			
-	SEMESTER-VI						
THIRD	MAT- 304F	Metric Spaces and Complex Analysis	Theory	4+0			
	MAT- 305F	Numerical Analysis and Operations Research	Theory	4+0			
-	MAT- 306F	Practical	Practical	0+2			
		SEMESTER-VII					
	MAT- 401F	Groups and Canonical Forms	Theory	4+0			
	MAT- 402F	Topology	Theory	4+0			
	MAT- 403F	Differential and Integral Equations	Theory	4+0			
-	MAT- 404F	Complex Analysis	Theory	4+0			
	MAT- 405F	Real Analysis	Theory	4+0			
FOURTH		SEMESTER-VIII					
	MAT- 406F	Fields and Modules	Theory	4+0			
	MAT- 407F	Differential Geometry of Manifolds	Theory	4+0			
	MAT- 408F	Partial Differential Equations	Theory	4+0			
	MAT- 409F	Operations Research	Theory	4+0			
F	MAT- 410F	Fluid Dynamics	Theory	4+0			

Course Structure of <u>Mathematics</u> as Major Subject in UG Honors Programme

SEMESTER-WISE TITLES OF THE PAPERS OF MATHEMATICS AS MAJOR SUBJECT IN UG PROGRAMME							
Year	Course Code Course Title		Theory/Practical	Credits			
		SEMESTER-I					
	MAT- 101F	Differential Calculus and Integral Calculus	Theory	4+0			
	MAT- 102F	Practical	Practical	0+2			
FIRST		SEMESTER-II					
1 1101	MAT- 103F	Matrices and Differential Equations	Theory	3+0			
	MAT- 104F	Geometry	Theory	3+0			
SEMESTER-III							
	MAT- 201F	Algebra	Theory	3+0			
	MAT- 202F	Mathematical Methods	Theory	3+0			
SECOND		SEMESTER-IV					
	MAT- 203F	Differential Equations	Theory	3+0			
	MAT- 204F	Mechanics	Theory	3+0			
	SEMESTER-V						
	MAT- 301F	Ring Theory and Linear Algebra	Theory	4+0			
	MAT- 302F	Tensor Analysis	Theory	3+0			
	MAT- 303F	Differential Geometry	Theory	3+0			
	SEMESTER-VI						
THIRD	MAT- 304F	Metric Spaces and Complex Analysis	Theory	4+0			
	MAT- 305F	Numerical Analysis and Operations Research	Theory	4+0			
	MAT- 306F	Practical	Practical	0+2			
		SEMESTER-VII					
	MAT- 401F	Groups and Canonical Forms	Theory	4+0			
	MAT- 402F	Topology	Theory	4+0			
	MAT- 403F	Differential and Integral Equations	Theory	4+0			
	MAT- 404F	Complex Analysis	Theory	4+0			
	MAT- 405F	Real Analysis	Theory	4+0			
	<u> </u>	SEMESTER-VIII					
FOURTH	Opt any two col	Urse of the following	Theory	4 . 0			
	MAT 400F	Pierus and Modules	Theory	4+0			
	MAI-407F	Differential Geometry of Manifolds	Theory	4+0			
	MAT- 400F	Operations Research	Theory	4+U 1+0			
	MAT- 4071 MAT- 410F	Fluid Dynamics	Theory	4+U 1+0			
	101A 1 - 410F	Discovered Descent Des	incory	₽⊤₽			
	MAT- 411F	Disseratation/ Research Project	Project	0+12			

Course Structure of <u>Mathematics</u> as Major Subject in UG Honors with Research Programme

UG Honors:

UG Honors opt only those students who passed UG Degree.

UG Honors with Research:

UG Honors with Research opt only those students who secured 75% marks in first six semester in UG Degree.

Programme Exit Options:

The mandatory number of credits which have to be secured for the purpose of award of Certificate in Faculty/ Diploma in Faculty/UG Degree/ UG Honors/ UG Honors with Research are listed in the following table.

S. No.	Type of Award	Stage of Exit	Mandatory Credits to be Secured for the Award	Exit Options			
1	Certificate in Faculty	After successful completion of Semester II	46	Exit option-1			
2	Diploma in Faculty	After successful completion of Semester IV	92	Exit option-2			
3	UG Degree	After successful completion of Semester VI	132	Exit option- 3			
4	UG Honors	After successful completion of Semester VIII	172				
	OR						
4	UG Honors with Research	After successful completion	172				
	(For students who secured 75% marks in first six semester)	of Semester VIII					

Subject Prerequisites:

To study this subject a student must had the subject(s) Mathematics in class 12th.

Program Outcomes (POs)

PO1: It is to give foundation knowledge for the students to understand basics of mathematics including applied aspects for the same.

PO2: It is to develop enhanced quantitative skills in pursuing higher mathematics and research as well.

PO3: Students will be able to develop solution-oriented approach towards various issues related to their environment.

PO4: Students will become employable in various government and private sectors.

PO5: Scientific temper in general and mathematical temper in particular will be developed in students.

Year	Semester	Program Specific Outcomes (PSOs)
First	SEM-I	PSO1. Student should be able to possess recall basic idea about mathematics which
	SEM-II	can be displayed by them.
Second	SEM-III	PSO2 . Student should have adequate exposure to many aspects of mathematical sciences.
	SEM-IV	
Third	SEM-V	PSO3. Student is equipped with mathematical modeling ability, critical mathematical
SEM-VI thinking, problem solving skills, etc. of studies including Science, Engine		thinking, problem solving skills, etc. and apply his/her skill and knowledge in various field of studies including Science, Engineering, Commerce and Management etc.
Fourth	SEM-VII	PSO4 . To encourage students for research studies in Mathematics and related fields.
	SEM-VIII	

FIRST YEAR (SEMESTER-I)

DIFFERENTIAL CALCULUS AND INTEGRAL CALCULUS

Class: UG	Year: FIRST	Semester: FIRST	
Subject: MATHEMATICS			
Course Code: MAT- 101F	FFERENTIAL CALCULUS AND ULUS		
Credits: 4+0	Core Compulsory		
Max. Marks: 25(Internal) + 75(External)	Min. Passing Marks: As per University CBCS Norm		

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Course outcomes:

CO1: The program outcome is to give foundation knowledge for the students to understand basics of mathematics including applied aspect for developing enhanced quantitative skills and pursuing higher mathematics and research as well.

CO2: By the time students complete the course; they will have wide ranging application of the subject and have the knowledge of real valued functions along with sequence. They will also be able to know about convergence of sequence. Also, they have knowledge about curvature, envelopeand evolutes, Riemann integral.

CO3: The main objective of the course is to equip the student with necessary analytic and technical skills. By applying the principles of differential calculus and integral calculus he/she learns to solve a variety of practical problems in science and engineering.

CO4: The student is equipped with standard concepts and tools at an intermediate to advance level that will serve him/her well towards taking more advance level course in mathematics.

Course prerequisites:

To study this course, a student must have the subject Mathematics in class 12th.

Unit	Topics						
_	PART-A						
	DIFFERENTIAL CALCULUS						
Ι	Definition of a sequence, Theorems on limits of sequences, Bounded and Monotonic sequences,						
	Convergent sequence, Cauchy's convergence criterion, Balzano Weierstrass theorem for sequence,						
	Cauchy sequence, Cauchy's first and second theorems on limits, limit superior and limit inferior of a						
	sequence, Cantor's theorem on nested intervals, subsequence.						
II	Limit, Continuity and differentiability of function of single variable, Cauchy's definition, Heine's						
	definition, equivalence of definition of Cauchy and Heine, Uniform continuity, Borel's theorem,						
	Bolzano's theorem, Intermediate value theorem, Extreme value theorem, Darboux's intermediate value						
	theorem for derivatives, Chain rule.						
III	Rolle's theorem, Lagrange and Cauchy Mean value theorems, mean value theorems of higher order,						
	Taylor's theorem with various forms of remainders, Successive differentiation, and Leibnitz theorem,						
	Maclaurin's and Taylor's series expansion.						
IV	Partial differentiation, Homogeneous function, Euler's theorem on homogeneous function, Deduction						
	from Euler's theorem, Jacobians and its properties, Asymptotes, Curvature, Envelops and Evolutes.						

Unit	Topics						
PART-B							
	INTEGRAL CALCULUD						
V	Completeness of R Riemann integral and its properties. Integrability of continuous and monotonic						
	functions Fundamental theorem of integral calculus Mean value theorems of integral calculus						
Differentiation under the sign of Integration.							
Beta and Gamma functions. Tracing of curves in Cartesian and Polar forms. Improper integ							
VI classification and convergence Comparison test u-test Abel's test Dirichlet's test quotient tes							
	Areas of Curve Lengths of curve Volumes of solid of revolution. Multiple integrals: Double and Triple						
VII	integrals Change of order of double integration. Area as a double integral in Cartesian form Dirichlet's						
	theorem, and Liouville's theorem for multiple integrals.						
Vector Differentiation Point function Vector differential operator Gradient Diverse							
VIII Normal on a surface, Directional Derivative. Second order differential operator. Lan							
	Vector Integration, Line integral, Circulation, Work done by a force, Surface integral, Volume integral,						
	Gauss, Green, Stokes theorems with prove and related problems.						
1. 2. 3. 4. 5.	 Books Recommended: (Part-A Differential Calculus) R.G. Bartle & D.R. Sherbert, Introduction to Real Analysis, John Wiley & Sons T.M. Apostal, Calculus Vol. I, John Wiley & Sons Inc. Gorakh Prasad, A text book on Differential Calculus, Pothishala Private Ltd., Prayagraj S. Balachandra Rao & C. K. Shantha, Differential Calculus, New Age Publication. H Anton I Birens and S Davis Calculus John Wiley and Sons Inc. 2002 						
6.	G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007.						
Books F	Recommended: (Part-B Integral Calculus)						
1. [Γ.M. Apostal, Calculus Vol. II, John Wiley Publication						
2. (Gorakh Prasad, A text book on Integral Calculus, Pothishala Private Ltd., Prayagraj						
3. 9	Shanti Narayan & Dr. P.K. Mittal, Integral Calculus, S.Chand						
4. 1	Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.						
Internal	Evaluation Methods (Max. Marks: 25)						
As prescri	bed by the University (as per common ordinance for examination and assessment).						

External Evaluation Methods (Max. Marks: 75)

FIRST YEAR (SEMESTER-I) PRACTICAL

Class: U	IG	Year: FIRST	Semester: FIRST		
Subject	MATHEMATICS				
Course	Code: MAT- 102F	Course Title: PRACT	ΓICAL		
Credits:	0+2	Core Compulsory			
Max. M	arks: 25(Internal) + 75(External)	Min. Passing Marks:	As per University CBCS Norm		
Total N	o. of Lectures-Tutorials-Practical (in	hours per week): L-T-	P: 0-0-4		
Course	outcomes:				
CO1. Th of equat /Maple /	ne main objective of the course is to equ ions by plotting the graphs using differ Scilab /C programming / R programmi	ip the student to plot the ent computer software ng etc.	e different graphs and solve the different types such as Sage Math/Mathematica /MATLAB /		
CO2. At	fter completion of this course student w	ould be able to know th	e Plotting the graphs.		
CO3. St	udent would be able to Sketching paran	netric curves: Trochoid,	Cycloid, Epicycloid.		
CO4. S Matrix o	tudent would be able to find numbers be operations.	etween two real number	rs and plotting of finite and infinite subsetof R,		
Course	prerequisites:				
To study	this course, a student must have the su	bject Mathematics in cl	ass 12th.		
		Topics			
• Pr	actical / Lab work to be performed in	n Computer Lab.			
• Lis	st of the practicals to be done using	ng Sage Math / Math	hematica /MATLAB / Maple / Scilab / R		
pr	ogramming / Python / C programmin	ag etc.			
1. 110		0115.			
	[m] (anatast internetion)				
11. 	[x] (greatest integer function)				
111.	x^{2n} ; $n \in N$				
iv.	$x^{2n^{-1}}; n \epsilon N$				
v.	$\frac{1}{X^{2n-1}}$; $n \in N$				
vi.	$\frac{1}{X^{2n}}$; $n \in N$				
vii.	$\sqrt{ax+b}$, $ ax+b $				
viii.	$ x $ for $x \neq 0$				
ix.	e^x for $x \neq 0$				
х.	e^{-x} for $x \neq 0$				
2. Plo	tting the graph of the following functio $g_e x$, sin x, cos x, tan x.	ns:			

- **3.** Plotting the graph of the following functions:
- sin hx, cos hx, tan hx.
- **4.** Sketching parametric curves: Trochoid, Cycloid, and Epicycloid.

5. By plotting the graph find the solution of the equation:

 $x = e^{x}$, $x^{2} + 1 = e^{x}$, $1 - x^{2} = e^{x}$, $x = \log_{10}(x)$, $\cos(x) = x$, $\sin(x) = x$, $\cos(y) = \cos(x)$, $\sin(y) = \sin(x)$.

6. Plotting the graphs of polynomial of degree 2, 3, 4 and 5.

7. Matrix operations:

- i. Addition,
- ii. Multiplication,
- iii. Inverse,
- iv. Transpose.

8. Complex number and their representations:

- i. Addition,
- ii. Multiplication,
- iii. Division,
- iv. Modulus.

Internal Evaluation Methods (Max. Marks: 25)

Practical Internal Evaluation shall be based on Practical File/Record, Viva-voce and Overall performance. {As prescribed by the University (as per common ordinance for examination and assessment)}.

External Evaluation Methods (Max. Marks: 75)

Practical External Evaluation shall be based on Viva-voce, Practical Exercises and Overall performance. {As prescribed by the University (as per common ordinance for examination and assessment)}.

Any remarks:

- At least two Computer Programmers and two Computer Operators must be assigned in computer lab.
- There should be a Computer Lab with minimum of 25 computer systems for 50 students with licensed and Free Open Source softwares related to this course.

FIRST YEAR (SEMESTER-II)

MATRICES AND DIFFERENTIAL EQUATIONS

Class: UG		Year: FIRST	Semester: SECOND					
Subject: 1	Subject: MATHEMATICS							
Course C	ode: MAT- 103F	Course Title: MAT	Course Title: MATRICES AND DIFFERENTIAL EQUATIONS					
Credits: (3+0	Core Compulsory	Core Compulsory					
Max. Ma	rks: 25(Internal) + 75(External)	Min. Passing Marl	s: As per University CBCS Norm					
Total No.	of Lectures-Tutorials-Practical	(in hours per week)	: L-T-P: 3-0-0					
Course of CO1: The matrices a	utcomes: e topics of the course are included and eigen values from basic level to	l in such a way that depth of knowledge	they focus on developing mathematical skills in .					
CO2: The Formation	e student will be able to find the of differential equations.	rank, eigen values o	of matrices and study the Differential Equations,					
CO3: The matrices a	e students will be capable of learn and Orthogonal Trajectories.	and visualize the fu	ndamental ideas about the rank, eigen values of					
CO4: On equations	successful completion of the cou and their properties. They have the	rse students have foundation for high	gained knowledge about matrices, differential er course in Matrices and differential equations.					
Course p	prerequisites:							
To study t	this course, a student must have the	subject Mathematic	s in class 12th.					
Unit		Торіс	S					
	MATRICES	AND DIFFERENT	IAL EQUATIONS					
I	Elementary operations on Matrices, Rank of a Matrix, Echelon form of a Matrix, Normal form or Canonical form of a Matrix, Inverse of a Matrix by elementary operations. Complex matrix, Conjugate of matrix, Transpose of Conjugate of matrix, Hermitian matrix and Skew-Hermitian matrix, Periodic matrix, Idempotent matrix, Unitary matrix. System of linear homogeneous and non-homogeneous equations, Consistency and Inconsistency of a system of linear equations, Theorems on consistency of a system of linear equations.							
п	Vector, Linear Dependence and Independence of vectors, Dependence and Independence of vectors of vectors by rank method. Eigen values, Eigen vectors and characteristic equation of a matrix, Orthogonal Vectors. Algebraic Multiplicity, Geometric Multiplicity, Regular eigen value, Caley-Hamilton theorem and its use in finding inverse of a matrix, Diagonalisation of square matrix, Power of matrix by Diagonalisation.							
III	Order and Degree of a Differential Equations, Formation of differential equations, General Solution, Particular Solution, Geometrical meaning of a differential equation, Equation of first order and first degree, Equation in which the variables are separable, Equation Reducible to Variable separable form, Homogeneous differential equations, Equations Reducible to Homogeneous form.							

IV	Exact differential equations and equations reducible to the exact form, Linear differential equations,
	Equations Reducible to Linear form; First order higher degree differential equations solvable for p, y, x.
	Clairaut's differential equation, Singular Solutions, Determination of singular solution, Orthogonal
	Trajectories, Trajectories in Cartesian form and Polar form.

- 1. Felix R. Gantmacher, The Theory of Matrices, AMS Chelsea Publishing.
- 2. Roger A. Horn, Charles R. Johnson, Matrix Analysis, Cambridge University Press.
- 3. Thomas S. Shores, Applied linear algebra and matrix analysis, Springer
- 4. G.F. Simmons, Differential Equations, Tata Mcgraw Hill Publishing Company Ltd.
- 5. M. D. Rai Singhania, Ordinary and Partial Differential Equations, S. Chand and Company Ltd., New Delhi.
- 6. Richard Bronson, Gabriel B. Costa, Schaum's Outline of Differential Equations, McGraw-Hill Education
- 7. Zafar Ahsan, Differential equations and their applications, PHI.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

FIRST YEAR (SEMESTER-II)

GEOMETRY

		GEOMETRI	
Class: U(G	Year: FIRST	Semester: SECOND
Subject:	MATHEMATICS	l	
Course Code: MAT- 104F		Course Title: GEOM	ETRY
Credits:	3+0	Core Compulsory	
Max. Ma	rks: 25(Internal) + 75(External)	Min. Passing Marks:	As per University CBCS Norm
Total No	of Lectures-Tutorials-Practical (in	hours per week): L-T	-P: 3-0-0
Course o CO1: Th geometry CO2: The to develop CO3: Th learn to d CO4: On and their	utcomes: e topics of the course are included in and three-Dimensional Coordinates fr e student will be able to find the concep p problem solving skills for solving va- e students will be capable of learn an- escribe some of the surfaces by using a successful completion of the course st properties. They have the foundation for prerequisites:	such a way that they om basic level to depth pts of three-Dimension rious types of concepts d visualize the fundan analytical geometry. audents have gained k or higher course in Geo	focus on developing mathematical skills in a of knowledge. al geometry. The course in geometry intends in three-Dimensional geometry. mental ideas about coordinate geometry and nowledge about regular geometrical figures ometry.
To study Unit	this course, a student must have the su	bject Mathematics in c	lass 12th.
0		- • • • • • •	
	(GEOMETRY	
I	Three-Dimensional Coordinates in s ratios, Projection of a segment on a Angle between two lines, Distance of	pace, Distance betwee straight line, Projectio f a point from a line.	n two points, Direction cosines and direction n of the join of two points on a straight line,
II	Plane, General equation of plane, Ed given points, Straight line in three di distance between two lines.	quation of the plane ir imensions, Coplanar li	a various forms, Equation of a plane through nes, The image of a point in a plane, shortest
III	Sphere, Equation of a sphere whose c a straight line, Cone, Equation of con	enter is given, Intersec ne, Equation of right ci	tion of two spheres, Intersection of sphere and rcular cone, enveloping cone.
IV	Cylinder, Right circular cylinder, Envi in standard form, the ellipsoid, the h line and a central conicoid, tangent p polar plane, diametral plane.	veloping cylinder, Cent yperboloid one sheet, plane, condition of tan	ral conicoid, properties of the central conicoid the hyperboloid of two sheets, intersection of gency, director sphere, normal to a conicoid,

- R. J. T. Bell, An Elementary Treatise on Co-ordinate geometry of three dimensions, Macmillan India Ltd., New Delhi, 1994.
- 2. Shanti Narayan, P.K. Mittal, Analytical Solid Geometry, S. Chand & Company, New Delhi, 2008.
- 3. M.M. Tripathi, Coordinate Geometry: Polar Coordinates Approach, Narosa Publishing House, New Delhi
- 4. P.R. Vittal, Analytical Geometry 3D, Pearson.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

SECOND YEAR (SEMESTER-III)

ALGEBRA Class: UG Year: SECOND Semester: THIRD **Subject:** MATHEMATICS Course Title: ALGEBRA Course Code: MAT- 201F Credits: 3+0 Core Compulsory Max. Marks: 25(Internal) + 75(External) Min. Passing Marks: As per University CBCS Norm Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 3-0-0 Course outcomes: **CO1:** Group theory is one of the building blocks of modern algebra. Objective of this course is to introduce students to basic concepts of Group theory and their properties. **CO2:** A student learning this course gets a concept of Integers, Group and their properties. This course will lead the student to basic course in advanced mathematics particularly in Algebra. **CO3:** The course gives emphasis to enhance students' knowledge of Permutation groups and Normal subgroups. **CO4:** On successful completion of the course students would have acquire knowledge about Integers, Group and will help him/her in going for higher studies and research. Course prerequisites: To study this course, a student must have passed Mathematics as Major Subject in UG First Year Programme. Unit Topics ALGEBRA T Properties of Integers, Divisor, Division algorithm. Greatest Common Divisor, Euclidean algorithm, Fundamental theorem of arithmemetic, Congruences and residue classes. Euler \emptyset –function and its properties, Euler's, Fermat's and Wilson's theorem. Π Algebraic Structure, Definition of a group with examples and simple properties, Subgroups, Generators of a group, Cyclic groups, Order of an element of a group, Centre of group. III Permutation groups, Cyclic permutation, Transposition, Even and odd permutations, The alternating group, Cayley's theorem, Coset decomposition, Lagrange's theorem and its consequences. IV Homomorphism and isomorphism, Kernel of homomorphism, Normal subgroups, Simple group, Quotient groups, Fundamental theorem of homomorphism, Theorems on isomorphism.

- 1. I. N. Herstein, Topics in Algebra, Wiley Eastern Ltd, New Delhi, 1975.
- 2. Joseph. A. Gallian, Contemporary Abstract Algebra, Cengage Learning India Private Limited, Delhi., Fourth impression, 2015.
- 3. P. B. Bhattacharya, S. K. Jain and S. R. Nagpal, First Course in Linear Algebra, Wiley Eastern Ltd., New Delhi, 1983.
- 4. S. Singh and Q. Zameeruddin, Modern Algebra, Vikas Publication House, India.
- 5. David M. Burton, Elementary Number Theory, Wm. C. Brown Publishers, Dubuque, Iowa 1989.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

SECOND YEAR (SEMESTER-III)

MATHEMATICAL METHODS

Class: UG	Year: SECOND	Semester: THIRD
Subject: MATHEMATICS		
Course Code: MAT- 202F	Course Title: MATHEMATICAL METHODS	
Credits: 3+0	Core Compulsory	
Max. Marks: 25(Internal) + 75(External)	Min. Passing Marks: As	s per University CBCS Norm
Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 3-0-0		

Course outcomes:

CO1: Laplace transforms and Fourier transforms is one of the building blocks of modern mathematics. Objective of this course is to introduce students to basic concepts of limit and continuity of function of two variables, Fourier series and their properties.

CO2: A student learning this course gets a concept of Laplace transforms, Fourier transforms and their properties. This course will lead the student to basic course in advanced mathematics particularly in function of two variables.

CO3: The course gives emphasis to enhance students' knowledge of function of two variables, Laplace transforms and Fourier series, Fourier expansion of piecewise monotonic functions, Calculus of variations, Fourier series for even and odd functions.

CO4: On successful completion of the course students would have acquire knowledge about function of two variables, Laplace transforms, Fourier series, Calculus of variations and will help him/her in going for higher studies and research.

Course p	rerequisites:
To study t	nis course, a student must have passed Mathematics as Major Subject in UG First Year Programme.
Unit	Topics
	MATHEMATICAL METHODS
I	Limit and Continuity of functions of two variables, Differentiation of function of two variables, Taylor's theorem for functions of two variables with examples, Maxima and minima for functions of two variables, Lagrange multiplier method. Exponential functions, hyperbolic functions, logarithm of a complex number, general exponential function. Inverse Circular function of complex quantities, inverse hyperbolic functions.
П	Laplace transform, Existence theorem for Laplace Transform, Linearity of Laplace transform and their properties, Laplace transform of the derivatives and integrals of a function, Heaviside expansion formula. Initial and Final value theorem, Unit step function and their properties. Laplace transform of periodic function, Unit impulse function, Inverse Laplace transforms, Convolution theorem, Solution of ordinary differential equation by using Laplace transform.
III	Periodic functions, Fourier series, Fourier expansion of piecewise monotonic functions, Fourier series for even and odd functions, Half - range expansions. Fourier transforms (finite and infinite) and properties of fourier transform.

IV	Calculus of variations-Variational problems with fixed boundaries- Euler's equation for functionals
	containing first order derivative and one independent variable, Extremals, Functionals dependent on
	higher order derivatives.

- 1. T.M. Apostal, Mathematical Analysis, Pearson
- 2. G. F. Simmons, Differential Equations with Application and Historical Notes, Tata -McGrawHill
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
- 4. A.C. Srivastava, Engineering Mathematics, PHI Publication.
- 5. N. Kumar, An Elementary Course on Variational Problems in Calculus, Narosa Publications, New Delhi.
- 6. A. S. Gupta, Text Book on Calculus of Variation, Prentice-Hall of India, New Delhi.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

SECOND YEAR (SEMESTER-IV)

DIFFERENTIAL EQUATIONS

Class: UG	Year: SECOND	Semester: FOURTH
Subject: MATHEMATICS		
Course Code: MAT- 203F	Course Title: DIFFERENT	FIAL EQUATIONS
Credits: 3+0	Core Compulsory	
Max. Marks: 25(Internal) + 75(External)	Min. Passing Marks: As p	er University CBCS Norm
Total No. of Lectures-Tutorials-Practical	(in hours per week): L-T-	P· 3-0-0

Course outcomes:

CO1: The objective of this course is to familiarize the students with various methods of solving differential equations, partial differential equations and to have qualitative applications.

CO2: A student doing this course is able to solve differential equations and is able to model problems in nature using ordinary differential equations. After completing this course, a student will be able to take more courses on differential equations. These entire courses are important in engineering and industrial applications for solving boundary value problems.

CO3: The object of the course is to give students knowledge of basic differential equations, partial differential equations such as Simultaneous Differential Equation and Total differential equation.

CO4: The student, after completing the course can go for higher quality problems in Differential Equation. This will be helpful in getting employment in industry.

Course prerequisites:

To study this course, a student must have passed Mathematics as Major Subject in UG First Year Programme.

0	
	DIFFERENTIAL EQUATIONS
I	Linear differential equation with constant coefficients, Homogeneous Linear differential equations (Cauchy-Euler differential equation), Equations Reducible to Homogeneous linear form (Legendre's linear differential equations).
Π	Second order linear differential equations: Use of a known solution to find another (reduction of order), reduction to normal form, Changing the independent variable, method of variation of parameters.
III	Ordinary Simultaneous Differential Equation, Method of solving simultaneous linear differential equation with constant coefficients, Solution of simultaneous differential equation in a different form.
IV	Total differential equation, Necessary and sufficient condition for Integrability of total differential equation, Methods for solving the total differential equation: Solution by inspection, one variable regarded as constant, homogeneous equations, method of auxiliary equations.

- 1. G.F. Simmons, Differential Equations with Application and Historical Notes, Tata-McGraw-Hill
- 2. B. Rai, D.P. Choudhary & H. J. Freedman, A Course of Ordinary Differential Equations, Narosa
- 3. M. D. Rai Singhania, Ordinary and Partial Differential Equations, S. Chand and Company Ltd., New Delhi.
- 4. L.E. Elsgolts, Differential Equation and Calculus of variations, University Press of the Pacific.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

SECOND YEAR (SEMESTER-IV)

MECHANICS

Class: UG	Year: SECOND	Semester: FOURTH
Subject: MATHEMATICS		
Course Code: MAT- 204F	Course Title: MECHANICS	
Credits: 3+0	Core Compulsory	
Max. Marks: 25(Internal) + 75(External)	Min. Passing Marks: As	per University CBCS Norm

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 3-0-0

Course outcomes:

CO1: The objective of this course is to familiarize the students with various methods of finding Forces in three dimensions. Poinsot's central axis. Wrenches. Null lines and null planes. Conjugate lines and conjugate forces and to have qualitative applications.

CO2: A student doing this course is able to model problems in nature using Statics & Dynamics. After completing this course, a student will be able to take more courses on Virtual work, Stable and unstable equilibrium, Catenary, Catenary of uniform strength etc. These entire courses are important in engineering and industrial applications.

CO3: The object of the course is to give students knowledge of basic mechanics such as motion under other laws and forces.

CO4: The student, after completing the course can go for higher quality problems in mechanics such as hydrodynamics. This will be helpful in getting employment in industry.

Course prerequisites:

To study this course, a student must have passed Mathematics as Major Subject in UG First Year Programme.

Unit	Topics
	MECHANICS
Ι	Forces in three dimensions. Poinsot's central axis. Wrenches. Null lines and null planes. Conjugate lines and conjugate forces.
П	Analytical conditions of equilibrium of coplanar forces, Virtual work, Stable and unstable equilibrium, Catenary and its properties.
III	Motion in a straight line: velocity and acceleration, Accelerations in terms of different coordinate systems. Motion in a plane: velocity and acceleration along radial and transverse direction, velocity and acceleration along tangential and normal directions, Elastic strings.
IV	Motion in resisting medium, Projectile motion in resisting medium. Moments and products of inertia. The momental ellipsoid. Equimomental systems. Principle axes. Central orbits. Apses and apsidal distances. Kepler's laws of planetary motion, Motion of a particle in three dimensions.

- 1. R.C. Hibbeler, Engineering Mechanics-Statics, Pearson.
- 2. S L Loney, The Elements of Statics & Dynamics Part-I (Statics), Arihant.
- 3. S L Loney, The Elements of Statics & Dynamics Part-II (Dynamics), Arihant.
- 4. A. Nelson, Engineering Mechanics Statics and Dynamics, Tata McGraw Hill
- 5. J.L. Synge & B.A. Griffith, Principles of Mechanics, Tata McGraw Hill

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

SECOND YEAR (SEMESTER-IV) PROJECT

Class: UG	Year: SECOND	Semester: FOURTH
Subject: MATHEMATICS		
Course Code: As prescribed by the	Course Title: PROJECT	
University		
Credits:0+3	The student can opt any one	e as a project from subject-1/ subject-2/
	subject-3 (Major-1/ Major-2	2/ Minor-3) in semester-IV
Max. Marks: 100	Min. Passing Marks: As per	University CBCS Norm

Course Outcomes:

CO 1. The objective of course is to write a project on the specific topic.

CO 2. The student shall be able to do their research work in different interdisciplinary areas.

CO 3. After completing the course, the student shall be able to understand some advanced mathematical techniques.

Course prerequisites:

To study this course, a student must have passed Mathematics as Major Subject in UG Semester-I, II and III Programme.

PROJECT

Candidate/Students should write a project on the specific topic based on any one core/major papers opted by the student in semester- I, II, III and IV. The students has been allotted a supervisor in this research project on their topic, given by the concern faculty. The project should be typed.

Evaluation Methods (Max. Marks: 100)

THIRD YEAR (SEMESTER-V)

RING THEORY AND LINEAR ALGEBRA

Class: UG		Year: THIRD	Semester: FIFTH
Subject: N	IATHEMATICS		
Course Co	ode: MAT- 301F	Course Title: RING THEORY AND LINEAR ALGEBRA	
Credits: 4	redits: 4+0 Core Compulsory		
Max. Mar	ks: 25(Internal) + 75(External)	Min. Passing Marks: As	per University CBCS Norm
Total No.	of Lectures-Tutorials-Practical	(in hours per week): L-T	-P: 4-0-0
Course ou	tcomes:		
CO1: Obje	ective of this course is to sustain	the students in Abstract Al	gebra of almost Advanced Level.
CO2: Ring	g theory and Linear Algebra is a	a basic course in almost a	l branches of science. The objective of this
course is to	pintroduce a student to the basics	of Abstract Algebra, Line	ar Algebra and some of its applications.
CO3: Afte	r successful completion of cour	rse, students will enable th	emselves to knowledge of Polynomial rings
over comm	utative rings, vector spaces.		
COA. Stud	lant mill was this becauled as in	contra coiona cinana	- mothematics and industrial mothematics
After comp	bletion of this course students wil	ll appreciate its interdiscipl	inary nature.
Course pr	erequisites:		
To study th	nis course, a student must have pa	assed Mathematics as Majo	or Subject in UG Second Year Programme.
Unit		Topics	
		PART-A	
T	Introduction to rings integral	domains and fields Char	acteristic of a ring Ring homomorphism
	Ideals and quotient rings	domains and neras, char	actensite of a mig, king nomonorphism,
	ideals and quotient migs.		
II	Field of quotients of an integra	l domain, Euclidean doma	in, Prime and maximal ideals, principal ideal
II	Field of quotients of an integra domain, Principal ideal rings, F	l domain, Euclidean doma Polynomial rings over com	in, Prime and maximal ideals, principal ideal nutative rings.
II	Field of quotients of an integra domain, Principal ideal rings, F	l domain, Euclidean doma Polynomial rings over com	in, Prime and maximal ideals, principal ideal nutative rings.
II	Field of quotients of an integra domain, Principal ideal rings, F Division algorithm and cons	l domain, Euclidean doma Polynomial rings over com sequences, Principal idea	in, Prime and maximal ideals, principal ideal nutative rings. domains, Factorization of polynomials,
II	Field of quotients of an integra domain, Principal ideal rings, F Division algorithm and cons Reducibility tests, Irreducibility	l domain, Euclidean doma Polynomial rings over com sequences, Principal idea y tests, Eisenstein criterion	in, Prime and maximal ideals, principal ideal nutative rings. domains, Factorization of polynomials, , Unique factorization in Z[x].

Unit	Topics
	PART-B
	LINEAR ALGEBRA
V	Vector spaces, Vector Subspaces, Linear combination, Linear independence and dependence of vectors,
	same and same spaces, Basis and Dimension, Quotient space.
VI	Linear transformations, The Algebra of linear transformations, Rank Nullity theorem, their representation
	as matrices.
VII	Linear functionals, Dual space, Dual Basis and Dimension, Bilinear and Quadratic forms
V 11	Enteri Tunetonais, Duai space, Duai Dusis and Enterision, Entrical and Quadratic tornis.
VIII	Change of basis, diagonal forms, triangular forms, inner product spaces and norms, Orthogonal vectors,
	Orthonormal sets and bases.

Books Recommended :(**Part-A Ring Theory**)

- 1. I. N. Herstein, Topics in Algebra, Wiley
- **2.** Joseph. A. Gallian, Contemporary Abstract Algebra, Cengage Learning India Private Limited, Delhi., Fourth impression, 2015.
- 3. David S. Dummit, & Richard M. Foote, Abstract Algebra (3rd ed.) (2016), Student Edition. WileyIndia.

Books Recommended :(Part-B Linear Algebra)

- 1. K. Hoffman and R. Kunze, Linear Algebra (2nd ed.), Prentice-Hall of India.
- 2. Gilbert Strang, Linear Algebra and its Applications, Cengage Learning, 2018.
- 3. Stephen H. Friedberg, Arnold J. Insel, & Lawrence E. Spence (2003). Linear Algebra (4th ed.). Pearson.
- 4. Serge Lang, Linear Algebra (3rd ed.) (1987), Springer
- 5. S. Kumaresan, Linear Algebra- A Geometric Approach, Prentice Hall of India, 1999

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

THIRD YEAR (SEMESTER-V)

TENSOR ANALYSIS

Class: UG	Year: THIRD	Semester: FIFTH
Subject: MATHEMATICS		
Course Code: MAT- 302F	Course Title: TENSOR A	NALYSIS
Credits: 3+0	Core Compulsory	
Max. Marks: 25(Internal) + 75(External)	Min. Passing Marks: As p	per University CBCS Norm
Total No. of Lectures-Tutorials-Practical	(in hours per week): L-T-	P: 3-0-0

Course outcomes:

• • •

CO1: The course is aimed at exposing the students to foundations of tensor analysis which will be useful in understanding various physical phenomena and gives the student the foundation in mathematics.

CO2: After completion of this course the student will have rigorous and deeper understanding of fundamental concepts in Mathematics. This will be helpful to the student in understanding pure mathematics and in research.

CO3: Students will be able to know the concepts of tensor, basic concepts and developments of differential geometry which will prepare the students to take up further applications in the relevant fields.

CO4: The course enables the students the basics of tensor and differential geometry for further application in higher studies.

Course p	Drerequisites:
To study	this course, a student must have passed Mathematics as Major Subject in UG Second Year Programme.
Unit	Topics
	TENSOR ANALYSIS
Ι	Tensor : Transformation of coordinates, Contravariant and covariant vectors and tensors, Scalar invariants,
	Mixed tensors, Symmetric and skew –symmetric tensor, Algebra of tensors, Contraction and inner product,
	Quotient law, Reciprocal tensors.
II	Associated tensors, Length of a vector, Unit Vector, Null vector and orthogonal vector, Riemannian Metric
	and Space and Christoffel symbols.
III	Covariant differentiation of vector and tensor, Ricci's theorem, Gradient of scalar, Divergence of a
	contravariant vector, covariant vector and conservative vector, Divergence of a contravariant tensor of
	order two, Divergence of a mixed tensor of type (1,1), Laplacian of an invariant, curl of a covariant vector
IV	Riemannian curvature tensor and their properties, Flat space, Ricci tensor and scalar curvature, Einstein
	space and Einstein tensor.

- 1. David C. Kay, Tensor Analysis, Schaum's Outline Series, McGraw Hill 1988.
- 2. R. S, Mishra, A Course in Tensors with Applications to Reimannian Geometry, Pothishala Pvt.Ltd, Allahabad.
- 3. P.K.Nayak, Tensor Calculus and Differential Geometry, PHI Learning Private Limited, Delhi.
- 4. D.C.Kay, Tensor Calculus, Sahaum's Outlines.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

THIRD YEAR (SEMESTER-V)

DIFFERENTIAL GEOMETRY

Class: UG	Year: THIRD	Semester: FIFTH
Subject: MATHEMATICS	1	
Course Code: MAT- 303F	Course Title: DIFFEREN	TIAL GEOMETRY
Credits: 3+0	Core Compulsory	
Max. Marks: 25(Internal) + 75(External)	Min. Passing Marks: As j	per University CBCS Norm
Total No. of Lectures-Tutorials-Practica	l (in hours per week): L-T	-P: 3-0-0
Course outcomes:		

outcol

CO1: The course is aimed at exposing the students to foundations of tensor analysis which will be useful in understanding various physical phenomena and gives the student the foundation in mathematics.

CO2: After completion of this course the student will have rigorous and deeper understanding of fundamental concepts in Mathematics. This will be helpful to the student in understanding pure mathematics and in research.

CO3: Students will be able to know the concepts of curve, basic concepts and developments of differential geometry which will prepare the students to take up further applications in the relevant fields.

CO4: The course enables the students the basics of tensor and differential geometry for further application in higher studies.

Course prerequisites:

To study	his course, a student must have passed Mathematics as Major Subject in UG Second Year Programme.
Unit	Topics
	DIFFEDENTIAL CEOMETDV
	DIFFERENTIAL GEOMETRY
Ι	Local theory of curves –space curves, Regular curve and Plane curve, twisted curve, equation of a plane
	and straight line, equation of curves in space, length of a curve, tangent to curve, Order of contact between
	curves and surfaces, osculating plane, equation of osculating plane, equation osculating plane at a point
	of curve of intersection of two surfaces. Tangent, principal normal and binormal, normal plane and
	rectifying plane.
II	Curvature and torsion, Serret-Frenet formulae, Direction cosines of the principal normal and binormal,
	Osculating sphere. Involutes and evolutes of curves, curve on surface, Regular point and Singularities of
	surface, transformation of parameters, Parametric curves, tangent plane and normal line, First
	fundamental form and arc length. Angle between two curves on surface.
III	Special tensors and its properties, orthogonal trajectories, Differential equation of orthogonal trajectories.
	Second fundamental form of surface, Geometric interpretation of the second fundamental form, Gauss
	and Weingarten equation, Identities based on Weingarten equation.
IV	Normal curvature and its equation, Meusnier's theorem. Principal directions and curvatures. Mean
	curvature, Gaussian Curvature, Minimal surface. Definition of Geodesics and differential equation of
	geodesics on a surface.

- 1. Somasundaram, Differential Geometry, Narosa Publishing House
- 2. Andrew Pressley, Elementary Differential Geometry, Springar Verlag, 2014
- 3. M. P. do Carmo, Differential geometry of curves and surfaces, Prentice Hall 1976.
- 4. Gray, Differential Geometry of Curves and Surfaces, CRC Press, 1998.
- 5. S. Montiel and A. Ros, Curves and Surfaces, American Mathematical Society, 2005.
- 6. B. O'Neill, Elementary Differential Geometry, Elsevier 2006.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

THIRD YEAR (SEMESTER-VI) METRIC SPACES AND COMPLEX ANALYSIS

Class: UG		Year: THIRD	Semester: SIXTH
Subject: M	IATHEMATICS		l
Course Co	de: MAT- 304F	Course Title: MET	RIC SPACES AND COMPLEX ANALYSIS
Credits: 4-	+0	Core Compulsory	
Max. Mar	ks: 25(Internal) + 75(External)	Min. Passing Mark	s: As per University CBCS Norm
Total No. o	of Lectures-Tutorials-Practical	l (in hours per week): L-T-P: 4-0-0
Course ou	tcomes:		
CO1: The ovarious phy CO2: Afte	course is aimed at exposing the s viscal phenomena and gives the s r completion of this course the	students to foundation student the foundation student will have r	ns of analysis which will be useful in understanding n in mathematics. igorous and deeper understanding of fundamental
concepts in	Mathematics. This will be help	ful to the student in u	inderstanding pure mathematics and in research.
CO3: Stud which will	ents will be able to know the c prepare the students to take up f	concepts of metric sp urther applications ir	bace, basic concepts and developments of analysis the relevant fields.
CO4: The higher stud	course enables the students the bies.	pasics of metric space	es and contour integration for further application in
Course pro	erequisites:		
To study th	is course, a student must have pa	assed Mathematics a	s Major Subject in UG Second Year Programme.
Unit		Тор	ics
		PART-A METRIC SPAC	CES

Ι	Definition of a Metric Space, Examples of Metric Space, Bounded and Unbounded Metric Space, Pseudo-
	metric, Subspace of a Metric Space, Diameter of a Subset of a Metric Space, Distance of a Point from a
	Non-empty set, Distance between two Non-empty Subsets of a Metric Space. Open and Closed Spheres,
	Neighborhood of a point, Interior Point and Interior of a Set, Open sets, Equivalent Metrics, Exterior,
	Frontier and Boundary of a Set, Limit Point and Isolated Point, Derived Set, Closed Set, Closure of a Set
	, Dense Sets and Separable Spaces.

II Subspace of a Metric Space, Examples, Sequence in a Metric Space, Convergence in a Metric Space
 Cauchy Sequence, Complete Metric Space, Isometry and Isometric Space.

 Continuous mappings, Sequential criterion and other characterizations of continuity, Uniform continuity, Homeomorphism, Contraction mapping, Banach fixed point theorem.

IV Cover, Compact Sets and compact Space, Finite Intersection Property and Compactness, Continuity and Compactness, Sequentially Compactness. Separated Sets, Disconnected Space and Disconnected Sets, Connected Space and Connected Sets, Components.

Unit	Topics
	PART-B
	COMPLEX ANALYSIS
\mathbf{V}	Complex numbers as ordered pairs, geometric representation of complex number, Stereographic
	projection, Continuity and Differentiability of complex functions, Analytic functions, Cauchy Riemann
	equations, Harmonic functions.
VI	Complex integration, Cauchy-Goursat theorem, Cauchy's Integral formula, Formulae for first, second
	and nth derivatives, Cauchy's Inequality, Liouville's Theorem.
VII	Series of non-negative terms, convergence and divergence, Comparison tests, Cauchy's integral test,
	Ratio tests, Root test, Raabe's logarithmic, De Morgan and Cauchy's condensation test, Taylor Series,
	Laurent Series and its examples.
VIII	Zeroes and poles of order m, Isolated singular points, Types of isolated singular points , Residues,
	Residues at poles and its examples, Residue at infinity, Cauchy's residue theorem, Evaluation of improper
	real integrals, Definite integrals involving sines and cosines.

Books Recommended: (Part-A Metric Spaces)

- 1. Shanti Narayan, A Course of Mathematical Analysis, S. Chand Publication.
- 2 .Satish Shirali and H. L Vasudeva. Metric Spaces, (2009), Springer, First Indian Print.
- 3. S, Kumaresan. Topology of Metric Spaces (2nd ed.), (2014). Narosa Publishing House. New Delhi.
- 4. G. F. Simmons, Introduction to Topology and Modern Analysis (2004), Tata McGraw Hill. New Delhi

Books Recommended: (Part-B Complex Analysis)

- 1. Shanti Narayan, Theory of Functions of a Complex Variable, S. Chand Publications.
- 2. J.W.Brown and R.V. Churchill Complex variables and Applications, McGraw-Hill Higher Education.
- 3. T.M. Apostal, Calculus Vol. I, John Wiley & Sons Inc.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

THIRD YEAR (SEMESTER-VI)

NUMERICAL ANALYSIS AND OPERATIONS RESEARCH

Class: UG		Year: THIRD	Semester: SIXTH
Subject: N	IATHEMATICS		
Course Co	ode: MAT- 305F	Course Title: NUMER RESEARCH	ICAL ANALYSIS AND OPERATIONS
Credits: 4	+0	Core Compulsory	
Max. Mar	Iax. Marks: 25(Internal) + 75(External) Min. Passing Marks: As per University CBCS Norm		
Total No.	of Lectures-Tutorials-Practical	l (in hours per week): L-T	-P: 4-0-0
Course ou	tcomes:		
linear prog to understa Algebraic CO2: The Later he ca CO3: The of this pap problems a research. CO4: Afte operation f	ramming for variety of problems and the basic concept of Nume and differential equation. main outcome will be that stude un opt for advance course in Num student will be able to solve vario er will enable the students to app and its related problems to apply er successful completion of this research for higher study and Res erequisites:	s occurring in daily life. At rical Analysis, the basic of ents will be able to handle p herical Analysis and linear p ous problems based on num- oly the basic concepts of r in further concepts and app s course students have ba search.	the end of the course the student will be able concept of linear programming and to solve problems and finding approximated solution. programming in higher Mathematics. erical techniques. After successful completion numerical techniques problems, transportation plication of Numerical Analysis and operation sic knowledge of Numerical Analysis and
To study tl	nis course, a student must have p	assed Mathematics as Majo	or Subject in UG Second Year Programme.
Unit		Topics	
I	N Error in numerical compu- Fundamental theorem of diff Newton's forward and back formula, Lagrange's interpola	PART-A NUMERICAL ANALYS tations, Calculus of fi erential calculus, Interpo- cward interpolation forn tion formula.	SIS inite differences, Difference operators, plation with equal and unequal intervals, mulae, Divided difference interpolation
Π	Solutions of algebraic and tran Regula-falsi method, Newton- equations: Gauss-elimination m method.	scendental equations, Dire Raphson method, Iteratio ethod, Guass-Jordan metho	ect and iterative methods, Bisection method, on method. Solution of simultaneous linear od, LU decomposition method, Guass-Seidel

III	Numerical differentiation derivatives using forward and backward formula, Numerical Integration, General Quadrature formula, Trapezoidal rule, Simpson's one-third and three-eight formulae and Weddle's rules.
IV	Numerical solution of ordinary differential equation, Picard method, Taylor series method, Euler's method, Modified Euler's method, Runge-Kutta method.
Unit	Topics
	PART-B OPERATIONS RESEARCH
V	Developing mathematical models, Mathematical programming, Linear programming, Convex sets, Convex and concave functions, Theorems on convexity, Linear programming problem (LPP), Simple and general LPP, Solutions of simple LPP by graphical method, Analytical solution of general LPP, Canonical and standard forms of LPP, Slack and surplus variables.
VI	Solution of general LPP by Simplex method. Use of artificial variables in simplex method, Big-M method and Two-Phase method, Concept of duality in linear programming, Theorems on duality, Dual simplex method.
VII	Transportation problem, Solution of transportation problem, Methods for finding Initial basic feasible solution of transportation problem, Optimal solution of transportation problem by modified distribution (MODI) method, Degeneracy in transportation problem, Maximization transportation problem. Assignment problem, Balanced and unbalanced assignment problems. Solution of assignment Problem, Hungarian Method, Maximization Assignment problem.
VIII	Game Theory: Competitive game, Two-Person Zero-Sum (Rectangular) game, Minimax-maximin criteria, Saddle points, Solution of rectangular game with and without saddle points, Huge rectangular games, Dominance rules, Solution of huge rectangular games using rules of dominance, Graphical method for 2xn and mx2 games without saddle points.
Books Re	commended:(Part-A Numerical Analysis)
1. M. K. 2. S. S. S	Jain, S.R.K. Iyengar & R.K. Jain, Numerical Methods for Engineering and scientificcomputation bastry, Introductory methods of Numerical Analysis
Books Re	commended: (Part-B Operation Research)
 Taha, V. S. Kanti Hillie Winst Hira I Ltd. Kalay 	Hamdy H, Opearations Research- An Introduction, Pearson Education. Verma, Linear Programming and Game Theory, Neelkamal Prakashan, Gorakhpur, 2011. Swarup , P. K. Gupta , Man Mohan Operations research, Sultan Chand & Sons r Frederick S and Lieberman Gerald J., Operations Research, McGraw Hill Publication. on Wayne L., Operations Research: Applications and Algorithms, Cengage Learning, 4 th Edition. O.S. and Gupta Prem Kumar, "Problems in Operations Research: Principles and Solutions", S Chand & Co
Internal I	Valuation Methods (Max. Marks: 25)
As prescri	bed by the University (as per common ordinance for examination and assessment).
External 1	Evaluation Methods (Max. Marks: 75)
As prescri	bed by the University (as per common ordinance for examination and assessment).

THIRD YEAR (SEMESTER-VI)

PRACTICAL

Class: UG	Year: THIRD	Semester: SIXTH
Subject: MATHEMATIC	CS	
Course Code: MAT- 306	F Course Title: PF	RACTICAL
Credits: 0+2	Core Compulsor	у
Max. Marks: 25(Internal)) + 75(External) Min. Passing Ma	arks: As per University CBCS Norm
Total No. of Lectures-Tu	itorials-Practical (in hours per wee	ek): L-T-P: 0-0-4
Course outcomes:		
col. The main objective system of linear equations equations by using difference programming / R program CO2. After completion of	s of the course is to equip the studen s, Interpolation, Numerical Integratic ent computer software such as Sage nming etc. f this course student would be able to	on, ordinary differential equations, ordinary difference e Math/Mathematica /MATLAB / /Maple / Scilab /C
 Course prerequisites: To study this course, To study this course 	, a student must have passed Mathem , a student must have the course MA Topics	aatics as Major Subject in UG Second Year Programme. T- 305F in UG third year.
programming / Pyt	thon / C programming etc.	athematica / WIA I LAD / Wiapie / Schab / K
i. Bisection m	nethod	
ii. Regula Fals	si method	
iii. Newton Raj	phson method	
iv. Iteration me	ethod	
2. Solution of system o i. LU decompos	of linear equations by attion method nination method	
ii. Gaussian elim iii. Gauss-Seidel 1	method	

- **5.** Numerical Integration by
 - i. Simpson's three-eight rule
 - ii. Weddle's Rule
- 6. Solution of ordinary differential equations by
 - i. Euler method
 - ii. Runge Kutta method
- 7. Solution of ordinary difference equations by Picard method.
- **8.** Solution of ordinary difference equations by Taylor series method.

Internal Evaluation Methods (Max. Marks: 25)

Practical Internal Evaluation shall be based on Practical File/Record, Viva-voce and Overall performance. {As prescribed by the University (as per common ordinance for examination and assessment)}.

External Evaluation Methods (Max. Marks: 75)

Practical External Evaluation shall be based on Viva-voce, Practical Exercises and Overall performance. {As prescribed by the University (as per common ordinance for examination and assessment)}.

Remarks:

- At least two Computer Programmers and two Computer Operators must be assigned in computer lab.
- There should be a Computer Lab with minimum of 25 computer systems for 50 students with licensed and Free Open Source softwares related to this course.

FOURTH YEAR (SEMESTER-VII)

GROUPS AND CANONICAL FORM

Class: UG	Year: FOURTH	Semester: SEVENTH
Subject: MATHEMATICS		
Course Code: MAT- 401F	Course Title: GROUPS AND CANONICAL FORM	
Credits: 4+0	Core Compulsory	
Max. Marks: 25(Internal) + 75(External)	Min. Passing Marks:	As per University CBCS Norm
Total No. of Lectures-Tutorials-Practical	(in hours per week):	L-T-P: 4-0-0

Course outcomes:

CO 1. The aim of this course is to understand Group theory covering a wide area of research in abstract algebra.

CO 2. The students shall be able to understand Sylow's theorems, group homomorphism, isomorphism etc. are used to define the structure of groups as well as it is applicable in physical and chemical sciences.

CO 3. After the completion of the course, the students shall be able to gain conceptual understanding of the course for qualifying various competitive exams such as CSIR-NET (JRF), IAS,PCS and other teaching jobs.

Course prerequisites:

To study this course, a student must have passed Mathematics as Major Subject in UG Third Year Programme.

Unit	Topics
	GROUPS AND CANONICAL FORM
Ι	Groups: Conjugacy relation. Normalizer of an element, Class equation of a finite group, Center
	of a group, Fundamental theorems on isomorphism of groups, Automorphisms, Inner
	automorphism.
II	Maximal subgroups, Commutator subgroups, Composition series, Examples of Composition
	series and normal series. Jordan-Holder theorem, Solvable groups, Solvable subgroups,
	Nilpotent groups.
	External and internal direct product of groups, Cauchy's theorem for finite group,
- 111	Cauchy's theorem for abelian group, Groups of order p ² and pq, Sylow's p subgroups,
	Sylow's first, second and third theorems. Application of Sylow's theorems to find the number
	of Sylow's p subgroups of a finite groups.
IV	Canonical forms: Similarity of linear transformations, Invariant subspaces, Reduction to
	triangularforms, Nilpotent transformations, Index of nilpotency, Invariants of a nilpotent
	transformation, The primary decomposition theorem, Jordan blocks and Jordan forms.

- **1.** I.N. Herstein: Topics in Algebra, Wiley Eastern Ltd., New Delhi.
- 2. P.B. Bhattacharya, S.K. Jain and S.R. Nagpaul Basic Abstract Algebra (Second Edition), Cambridge University Press, Indian Edition.
- **3.** Surjeet Singh and Qazi Zameeruddin: Modern Algebra, Vikas Publishing House. Pvt. Ltd.
- 4. K.B. Datta:Matrix and Linear Algebra, Prentice Hall of India Pvt. Ltd., New Delhi,.
- 5. S. Kumaresan: Linear Algebra, A Geometric Approach, Prentice Hall of India.
- 6. A.R. Vasishtha & A.K. Vasishtha: Modern Algebra, Krishna Prakashan Media (P) Ltd., Meerut.
- 7. H.K.Pathak: Abstract Algebra, Shiksha Sahitya Prakashan.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

FOURTH YEAR (SEMESTER-VII)

TOPOLOGY

Class: U(3	Year: FOURTH	Semester: SEVENTH	
Subject:	MATHEMATICS			
Course Code: MAT- 402F		Course Title: TOPOLOG	Course Title: TOPOLOGY	
Credits:	4+0	Core Compulsory		
Max. Ma	rks: 25(Internal) + 75(External)	Min. Passing Marks: As p	per University CBCS Norm	
Total No	. of Lectures-Tutorials-Practical	l (in hours per week): L-T-	P: 4-0-0	
Course o	utcomes:			
CO 1. Tł	ne aim of this course is to under	stand the concept of theory	of continuous curve, differentiable and	
Riemanni	an manifold and lie groups with the	heir applications.		
CO 2. Th	e students shall be able to underst	and the theory of Banach ar	d Hilbert spaces and their operators.	
CO 3. At	fter the completion of the course	, they are able to understar	nd abstract Harmonic analysis on locally	
compact §	groups.			
Course p To study	rerequisites: this course, a student must have p	assed Mathematics as Major	r Subject in UG Third Year Programme.	
Unit		Topics		
		TOPOLOGY		
I	Definition and examples of Neighbourhoods. Interior, extension sub-bases. Subspaces and relations	of topological spaces. erior and boundary. Accum ntive topology. Neighbour	Closed sets. Closure. Dense subsets. nulation points and derived sets. Bases and hood Systems.	
II	Continuous functions and he spaces. Lindelof's theorems.	omeomorphism, The Pas Separable spaces. Second	ting lemma. First and second countable Countability and Separability.	
III	Separation axioms T_0, T_1, T_2, T_3, T_4 ; their characterizations and basic properties. Urysohn Lemma Tietze extention theorem.			
IV	Compact sets and their properties. Finite intersection property, Bolzano Weierstrass property. Continuous functions and compactness, Sequential compactness, countable compactness and their comparison. One point compactification. Connected spaces. Connectedness on the real line. Components. Locally connected Spaces.			

- **1.** George F. Simmons : Introduction to Topology and Modern Analysis, Mc Graw-Hill Book Company.
- 2. J.L. Kelley : General Topology, Van Nostrand, Reinhold Co., New York.
- **3.** K.D. Joshi: Introduction to General Topology, Wiley Eastern Ltd.
- 4. James R Munkres : Topology, Prentice Hall of India Pvt. Ltd., New Delhi.
- 5. Willard: General Topology Addison-Wesley, Reading.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

FOURTH YEAR (SEMESTER-VII)

DIFFERENTIAL AND INTEGRAL EQUATIONS

Class: UG		Year: FOURTH	Semester: SEVENTH	
Subject: MATHEMATICS				
Course Code: MAT- 403F	se Code: MAT- 403F Course Title: DIFFERENTIAL AND INTEGRAL EQUATIONS			
Credits: 4+0		Core Compulsory		
Max. Marks: 25(Internal)	+ 75(External)	Min. Passing Marks: As per University CBCS Norm		
Total No. of Lectures-Tut	orials-Practical	(in hours per week):	L-T-P: 4-0-0	
Course Outcomes:				
CO 1 . The students shall be able to learn the series solution of differential equation of second order with variable coefficients				
CO 2. The aim of this co	urse is to unde	rstand initial and bou	undary value problems.	
CO3 . After the completion of the course, the students shall be able to solve linear Volterra and Fredholm				
integral equations using	integral equations using appropriate methods and understand the relationship between integral and			
differential equations.				
Course prerequisites:				
To study this course, a stud	ent must have pa	assed Mathematics as	Major Subject in UG Third Year Programme.	
Unit		Торі	cs	
	DIFFEREN	TIAL AND INTEGR	RAL EOUATIONS	

I Series solution of differential equations of second order with variable coefficients and emergence of special functions, orthogonal sets of function, orthogonality of some special functions, Hermite orthogonality of a set of complex valued functions, Sturm-Liouville equation, Sturm-Liouville problem, Hypergeometric differential equation, Papperitz symbol, Pochhammer symbol, Hypergeometric function, Solution of Gauss's Hypergeometric Differential Equation, differentiation of Hypergeometric functions, Hermite's differential equation and its solution, Hermite's polynomials, generating function for $H_n(x)$, Rodrigue's formula for $H_n(x)$, orthogonality of Hermite's polynomials, recurrence formulae for Hermite's polynomials.

II Legendre's differential equation and its solution, Legendre's functions, Rodrigue's formula for $P_n(x)$, generating function for $P_n(x)$, Laplace definite integrals for $P_n(x)$, orthogonality of Legendre's polynomials, recurrence formulae for Legendre's polynomials, Beltrami result. Bessel's differential equation and its solution, Bessel's functions, generating function for $J_n(x)$, differential equations reducible to Bessel's differential Equations, orthogonality of Bessel's functions, recurrence formulae for Bessel's polynomials.

III	Introduction of integral equations, linear integral equations, types of linear integral equations, types of Kernels, conversion of differential equations to integral equations, L_2 kernels and L_2 functions, eigen values and eigen functions, solution of Volterra integral equations by successive approximations and successive substitution methods.
IV	Fredholm integral equations of first and second kinds, solution of Fredholm integral equations by Successive approximations and successive substitution methods, Neumann Series, Volterra solution of Fredholm integral equation of second kind, reduction of Volterra integral equation into differential equation.

- 1. V. S.Verma, Series Solution and Special Functions, Neel Kamal Prakashan, Gorakhpur, 2017.
- 2. V. S.Verma, Fundamentals of Integral Equations Neel Kamal Prakashan, Gorakhpur, 2018.
- **3.** M D Raisinghania, Mathematical methods, Kedarnath, Ramnath, Meerut, 1996.
- 4. JN Sharma, RK Gupta, Special functions, Krishna Prakashan Media (P) Ltd, 2020.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

FOURTH YEAR (SEMESTER-VII)

COMPLEX ANALYSIS

Class: UG		Year: FOURTH	Semester: SEVENTH	
Subject: N	MATHEMATICS			
Course C	ode: MAT- 404F	Course Title: COMPI	LEX ANALYSIS	
Credits: 4	l+0	Core Compulsory		
Max. Mai	rks: 25(Internal) + 75(External)	Min. Passing Marks:	As per University CBCS Norm	
Total No.	of Lectures-Tutorials-Practical	(in hours per week):	L-T-P: 4-0-0	
Course (Outcomes:			
CO 1. Th	e aim of this course is to unde	erstand the use of this	s course in different field of mathematical	
Analysis.				
CO 2. Th	e students shall be able to thin	k and develop new id	leas in complex analysis.	
CO 3. At	fter the completion of the cou	rse, the students shall	Il be able to get benefit of this course in	
various n	ational and international compo	etitive examinations.		
Course pi	rerequisites:			
To study t	his course, a student must have pa	assed Mathematics as N	Aajor Subject in UG Third Year Programme.	
Unit		Торіс	s	
	COMPLEX ANALYSIS			
Ι	Conformal Mapping, Mobius (Bilinear) transformations: involving circles and half-planes, fixedpoint, cross ratio, Transformations $w=z^2$, $w = tan^2(z/2)$.			
II	Power series and its convergence. Analyticity of power series, singularity of power series, Gamma function. Zeta Function.			
III	Analytic continuation. Uniq analyticcontinuation. Natural	ueness of analytic boundary.	continuation. Power series method of	
IV	Maximum-modulus theorem. Schwarz's lemma. Hadamard's three-circles theorem. Borel- Cartheodory theorem. Pharagmen- Lindelof theorem.			
Books Re	commended:			
1. E.C. '	Titchmarsh: Theory of Functions,	Oxford University Pres	ss, London.	
2. Mark	J. Ablowitz and A.S. Fokas	: Complex Variables:	Introduction and Applications, Cambridge	
University Press, South Asian Edition, 1998.				
3. R.V. Churchill & J.W. Brown. Complex Variables and Applications, 5 th Edition McGraw-Hill,New York,				
4 Shanti Narayan: Theory of Functions of a Complex Variable S. Chand & Co. New Delhi				
5 S Ponnusamy Foundation of Complex Analysis Narosa Publication			lication	
Internal I	Evaluation Methods (Max. Mar	ks: 25)		
As preseri	had by the University (as per som	mon ordinance for eve	mination and assessment)	
rs presen	is presented by the entrensity (as per common ordinance for examination and assessment).			
External 1	Evaluation Methods (Max. Mar	·ks: 75)		

FOURTH YEAR (SEMESTER-VII)

REAL ANALYSIS

Class: UG	Year: FOURTH	Semester: SEVENTH
Subject: MATHEMATICS		
Course Code: MAT- 405F	Course Title: REAL ANALYSIS	
Credits: 4+0	Core Compulsory	
Max. Marks: 25(Internal) + 75(External)	Min. Passing Marks: As per University CBCS Norm	
Total No. of Lectures-Tutorials-Practical	(in hours per week): L-T-	P: 4-0-0

Course Outcomes:

CO 1. The aim of this course is to demonstrate ability to think critically by proving mathematical conjectures and establishing theorems.

CO 2. The student shall be able to demonstrate an intuitive and computational understanding of bounded variation, Uniform convergence and power series through solving application problem.

CO 3. After the completion of the course, the student shall be able to enter into wide area of research in analysis and differential geometry. Also get benefit of this course in various national and international competitive examinations.

Course p	erequisites:		
To study t	his course, a student must have passed Mathematics as Major Subject in UG Third Year Programme.		
Unit	Topics		
	REAL ANALYSIS		
I	Functions of Bounded Variation and some properties of function of bounded variation, Lipschitz condition and function. Variation function, Positive Variation function, Negative Variation function and The Jordan Decomposition theorem.		
II	Definition and Existence of Riemann- Stieltjes integrals. Properties of the integral, integration and differentiation, the first and second mean value theorem, the fundamental theorem of integral calculus, change of variable and Integration by parts for Riemann- Stieltjes. Relation between Riemann and Riemann- Stieltjes integral. Riemann- Stieltjes integrals and bounded variation.		
ш	Sequences of functions of real numbers and its related examples. Pointwise convergence and uniform convergence. CauchyCriterion of uniform convergence, M_n test, Weierstrass M- test, everywhere continuous but nowhere differentiable functions. Dini's Criterion of uniform convergence. Uniform convergence and continuity. Continuity of limit function. Uniform convergence and Riemann Stieltjes integration, Uniform convergence and differentiation.		

IV Abel's and Dirichlet's tests for uniform convergence. Connections between Riemann-Stieltjes integrals, uniform convergence and bounded variation. Curves, Rectifiable curves, Additive and Continuity properties of arc length. Power series, Radius of convergence and interval of convergence, Formulas for determining the radius of convergence, Uniqueness theorem for power series, First and Second form of Abel's theorem and Tauber's theorem for power series.

Books Recommended:

- Walter Rudin: Principles of Mathematical Analysis (3rd edition), McGraw-Hill, Kogakusha, 1976 International Student Edition.
- 2. H. L. Royden: Real Analysis, Macmillan Pub. Co. Inc. New York, 4th Edition, 1993.
- **3.** Richard Johnson Baugh: Foundation of Mathematical Analysis.
- 4. H. K. Pathak: Real Analysis, Shiksha Sahitya Prakashan.
- 5. Apostol: Mathematical Analysis, Narosa Publishing House.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

FOURTH YEAR (SEMESTER-VIII)

FIELDS AND MODULES

Class: UG		Year: FOURTH	Semester: EIGHTH	
Subject: M	IATHEMATICS			
Course Co	ode: MAT- 406F	Course Title: FIELDS AN	Course Title: FIELDS AND MODULES	
Credits: 4	+0	Core Compulsory		
Max. Mar	ks: 25(Internal) + 75(External)	Min. Passing Marks: As p	per University CBCS Norm	
Total No.	of Lectures-Tutorials-Practical	(in hours per week): L-T-	P: 4-0-0	
Course O	outcomes:			
CO 1. The	e aim of this course is to think	and develop new ideas ir	this subject.	
CO 2 . The	e student shall be able to under	stand the applications of t	this course in different field of Science	
and Techr	nology	11		
CO 3. Aft	er the completion of the course	e the student shall be able	to get benefit of this course in various	
national a	nd international competitive ex	kaminations.		
Course pr	erequisites:			
To study th	nis course, a student must have pa	assed Mathematics as Major	r Subject in UG Third Year Programme.	
Unit		Topics		
		FIELDS AND MODULE	S	
I	Field theory: Extension Fields. Algebraic and transcendental extensions. Splitting Field. Separableand inseparable extensions.			
II	Normal extension. Perfect Fields. Finite Fields.			
III	Automorphisms of extensions. Galois group. Fundamental theorem of Galois Theory. Construction with ruler and compass. Solution of polynomial equations by radicals.			
IV	Modules, Cyclic modules. Simple modules. Semi-simple modules. Schuler's lemma. Free modules. Noetherian and artinian modules. Hilbert basis theorem.			
Books Rec	commended:			
1. I.I 2. P. Ca State 3. State	 I.N. Herstein : Topics in Algebra, Wiley Eastern Ltd., New Delhi. P.B. Bhattacharya, S.K. Jain and S.R. Nagpaul : Basic Abstract Algebra (Second Edition), Cambridge University Press, Indian Edition. Surjeet Singh and Oazi Zameeruddin: Modern Algebra, Vikas Publishing House, Put, Ltd. 			
4. K	K.B. Datta : Matrix and Linear Algebra, Prentice Hall of India Pvt. Ltd., New Delhi.			
5. S.	5. S. Kumaresan : Linear Algebra, A Geometric Approach, Prentice Hall of India.			
6. A	6. A.R. Vasishtha & A.K. Vasishtha : Modern Algebra, Krishna Prakashan Media (P) Ltd.,			
7. H	7. H.K.Pathak: Abstract Algebra, Shiksha Sahitya Prakashan.			
Internal E	Internal Evaluation Methods (Max. Marks: 25)			
As prescrib	As prescribed by the University (as per common ordinance for examination and assessment)			
External I	Evaluation Methods (Max. Mar	ks: 75)		
As prescribed by the University (as per common ordinance for examination and assessment)				
present				

FOURTH YEAR (SEMESTER-VIII)

DIFFERENTIAL GEOMETRY OF MANIFOLDS

Class: UG		Year: FOURTH	Semester: EIGHTH
Subject: N	IATHEMATICS	I	
Course Co	ode: MAT- 407F	Course Title: DIFFEREN	TIAL GEOMETRY OF MANIFOLDS
Credits: 4	+0	Core Compulsory	
Max. Mar	ks: 25(Internal) + 75(External)	Min. Passing Marks: As p	per University CBCS Norm
Total No.	of Lectures-Tutorials-Practical	(in hours per week): L-T-	P: 4-0-0
Course O	utcomes:		
CO 1. The this course CO 2. Th Tensor A	e aim of this course is to under e. ne student shall be able to lgebra, Differentiable manifo	estand the basic of this con demonstrate an intuitiv ld, Riemannian Manifol	urse and think & develop new ideas in ve and computational understanding of d, Exterior algebra and Submanifolds &
CO 3. Aft differentia course in	aces. For the completion of the course al geometry and its application various national and internatio	e the student shall be able s in physical sciences an nal competitive examinat	to enter into wide area of research in d Cosmology. Also get benefit of this tions.
Course pr	erequisites:		
To study tr	Topics		
	DIFFEDEN	TIAL CEOMETRY OF N	ANIEOI DS
		TIAL GEOMETRI OF N	MANIFOLDS
1	Tensor Algebra: Contravariant and covariant vector. Tensor product of vector spaces, tensor, contravariant, covariant and mixed tensor of second order. Tensor of type (r, s), tensor product oftensors. Symmetric and skew symmetric tensors, contraction. Definition and examples of differentiable manifold, Differentiable functions, Differentiable curves.		
II	 II Tangent space, Vector fields, Lie bracket. Principal Fibre Bundle, cross section, Linear Frame Bundle, Associated Principal Bundle, Vector Bundles, Bundle Homomorphism, Tangent Bundle, Fundamental Vector Field. Invariant view point of connections. Covariant differentiation. 		
III	Torsion. Curvature. Parallelism. Difference tensor of two connections. Lie derivative. RiemannianManifold. Riemannian connection. Riemannian curvature tensor and Ricci tensor. Idenitities of Bianchi. Sectional curvature and Schur's theorem.		
IV	V Exterior product of two vectors. Exterior algebra of order r. Exterior derivative. Cartans's structural equations. Submanifolds and Hypersurfaces. Normals. Gauss's formula. Weingarten equations.		

- R. S. Mishra, A Course in Tensors with Applications to Riemanian Geometry, Pothishala, Allahabad, 1965.
- 2. Y. Matsushima, Differentiable Manifolds, Marcel Dekker, 1972.
- **3.** B. B. Sinha, An Introduction to Modern Differential Geometry, Kalyani Prakashan, New Delhi, 1982.
- **4.** Y. Talpiert, Differential Geometry with applications to Mechanics and Physics, Marcel Dekkar Inc. 2001.
- 5. N.J. Hicks, Notes on Differential Geometry, D. Van Nostrand Inc., 1965.
- 6. U.C.De and A.A.Shaaikh, Differential Geometry of Manifolds, Narosa Publishing House, New Delhi 2007.
- K.S.Amur ,D.J.Shetty and C.S.Bagewadi, An Introduction to Differential Geometry , Narosa Publishing House, New Delhi 2010.
- S. Shahshahani, An Introductory Course on Differentiable Manifolds, Dover Publication Inc. New York, 2016.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

FOURTH YEAR (SEMESTER-VIII)

PARTIAL DIFFERENTIAL EQUATIONS

Class: UG	ł	Year: FOURTH	Semester: EIGHTH	
Subject: N	IATHEMATICS			
Course Code: MAT- 408F		Course Title: PARTIAL	DIFFERENTIAL EQUATIONS	
Credits: 4	+0	Core Compulsory		
Max. Mar	ks: 25(Internal) + 75(External)	Min. Passing Marks: As	per University CBCS Norm	
Total No.	al No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0			
Course C	outcomes:			
CO 1. Th	e aim of this course is to learn	formation and classification	tion of partial differential equations.	
CO 2. Th	e student shall be able to solve	e partial differential equa	tions using different methods.	
CO 3. Af	ter the completion of the cour	se, the student shall be	able to use the method of separation of	
variables	to solve Laplace, diffusion and	l wave equations.		
Course pr	erequisites:			
To study the	his course, a student must have pa	assed Mathematics as Maj	or Subject in UG Third Year Programme.	
Unit	DADTI			
	PARTIAL DIFFERENTIAL EQUATIONS			
I	Introduction of partial differen	ntial equations, formation	n of partial differential equations, partial	
	differential equations of order one and its classification, Lagrange's partial differential			
	equation of order one and its solution, general methods of solution of Lagrange's equation,			
	method of grouping and method of multipliers, linear partial differential equation of order one			
	with n independent variables.			
II	Non-linear partial differential	equations of order one	, complete integral, particular integral,	
	singular integral and general i	ntegral with geometrical	interpretations, standard forms of non-	
	linear partial differential eq	uations of order one a	and their solutions, non-linear partial	
	differential equations of order one reducible to standard forms, compatible system of partial			
	differential of first order, C	harpit's and Jacobi's i	nethod for solving non-linear partial	
	differential equation of order one.			
	Formation of partial differe	ntial equation of high	er order, linear homogeneous partial	
III	differential equation with co	nstant coefficients of s	econd order, linear non-homogeneous	
	partial differential equation w	vith constant coefficients	s of second order, Euler-Cauchy partial	
	differential equation.			

IV Linear partial differential equations with variable coefficients, classification of linear partial differential equations of second order and canonical forms, solution of non-linear partial differential equations of second order by Monge's method, method of separation of variables for solving Laplace, diffusion and wave equations.

Books Recommended:

- V.S.Verma, A Text Book of Partial Differential Equations, Neelkamal Prakashan, Gorakhpur, 2019.
- 2. I.N. Sneddon, Elements of Partial Differential Equations, Courier Corporation, 2006.

3. Tyn Myint-U and Lokenath Debnath, Linear Partial Differential Equations for Scientists and Engineers, 4th edition, Springer, Indian reprint, 2006.

4. S.L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, India, 2004.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

FOURTH YEAR (SEMESTER-VIII)

OPERATIONS RESEARCH

Class: UG	Year: FOURTH	Semester: EIGHTH
Subject: MATHEMATICS		
Course Code: MAT- 409F	Course Title: OPERATIONS RESEARCH	
Credits: 4+0	Core Compulsory	
Max. Marks: 25(Internal) + 75(External)	Min. Passing Marks: As per University CBCS Norm	
Total No. of Lectures-Tutorials-Practical	l (in hours per week): L-T-	P: 4-0-0

Course Outcomes:

CO 1. The aim of this course is to apply it in different sectors of research field like game theory, job sequencing, network analysis, dynamical programming etc.

CO 2. The student shall be able to do their research work in different interdisciplinary areas.

CO 3. After the completion of the course, the student shall be able to get hired by most of the companies

as OR technician since companies require OR experts to get maximum output out of minimum resources.

Course prerequisites:

To study this course, a student must have passed Mathematics as Major Subject in UG Third Year Programme.

Unit	Topics
	OPERATIONS RESEARCH
Ι	Inventory Control: Introduction, Classification of Inventory, Economic parameter associated
	withinventory problems, Deterministic and Probabilistic models with without lead time.
II	Sequencing Problems: Assumptions for sequencing problem. Processing n jobs on two
	machines, n jobs on three machines, 2 jobs on m machines, Problem of Replacement,
	Individuals and Groupreplacement policies
	Network analysis: Basic concepts and definition. Network drawing and analysis Critical path
III	method. Labelling method. Methods based on time estimates to find critical path. Concept of
	slackand float. Resource levelling and time-cost trade-off analysis. Time-cost optimization
	procedure. Project crashing. PERT. Requirements for application of PERT technique.
	Practical limitations inusing PERT. Diffferences in PERT and CPM.

IV Non-Linear Programming: Introduction and definitions. Formulation of non-Linear programming problems, General non-linear programming problems. Kuhn-Tucker conditions, Lagrangian Method, Constrained optimization with equality constraints. Constrained optimization with inequality constaints. Saddle point problems Saddle points and NLPP. Wolfe's and Beale's method osolve Quadratic Programming problem.

Books Recommended:

- 1. S.D. Sharma: Operations Research, Kedar Nath Ram Nath & Company.
- 2. S.S. Rao: Optimization Theory and Applications, Wiley Eastern Ltd., New Delhi.
- 3. J.K. Sharma: Operations Research Theory and Applications, Macmillan India Ltd.
- **4.** H.A. Taha: Operations Research An Introduction, Macmillan Publishing Co., Inc., New York.
- Kanti Swarup, P.K. Gupta, Man Mohan: Operations Research, Sultan Chand and sons, New Delhi.
- 6. B.S. Goel, S.K. Mittal: Operations Research, Pragati Prakashan, Meerut.
- P.K. Gupta, D.S. Hira: Operatons Research An Introduction, S. Chand & CompanyLtd., New Delhi.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

FOURTH YEAR (SEMESTER-VIII)

FLUID DYNAMICS

Class: UG		Year: FOURTH	Semester: EIGHTH	
Subject: N	IATHEMATICS			
Course Code: MAT- 410F		Course Title: FLUID DYN	Course Title: FLUID DYNAMICS	
Credits: 4	+0	Core Compulsory		
Max. Mar	ks: 25(Internal) + 75(External)	Min. Passing Marks: As p	per University CBCS Norm	
Total No.	of Lectures-Tutorials-Practical	(in hours per week): L-T-	P: 4-0-0	
Course O	outcomes:			
CO 1. The	e aim of this course is to effective	vely write mathematical se	olutions in a clear and concise manner.	
CO 2. Th	e student shall be able to dem	onstrate an intuitive and	computational understanding of Fluid	
motion, L	agrangian and Eulerian metho	ods, Euler's and Lagrang	e's Equation of continuity, Newton's	
law of vis	cosity Navier-Stokes equation	s of motion, Steady visco	ous flow between parallel planes.	
CO 3. Af	ter the completion of the cours	e, the student shall be ab	le to research in applied mathematics,	
cosmolog	y and use the knowledge in qu	alifying various competit	ive exams like CSIR-NET	
Course pr	erequisites:			
To study th	this course, a student must have passed Mathematics as Major Subject in UG Third Year Programme.			
Unit			100	
		FLUID DYNAMI		
Ι	General idea of fluids, Prop	erties of fluids, Fluid m	otion, Kinds of motion, Methods of	
	describing fluid motion, Lagra	ngian and Eulerian metho	ods, Relation between Lagrangian and	
	Eulerian methods, Streamline	s, Path lines, Streak lines	s, Velocity potential, Vorticity vector,	
	Vortex lines, Boundary surface	ce, Equation of continuity	y by Euler's and Lagrange's methods,	
	Equivalence between Eulerian and Lagrangian forms of equations of continuity, Equation o			
	continuity in other coordinate systems, Symmetrical forms of equation of continuity.			
П	Euler's and Lagrange's equati	on of motion, Lamb's hyd	drodynamical equations, Conservative	
	field of force, Euler's equation	ons of motion in cylindr	ical and Spherical polar coordinates,	
	Equations of motion under in	pulsive force, Energy eq	uation, Pressure equation, Bernaulli's	
	equation and its applications,	Euler's momentum theor	em, D'Alermbert's paradox.	

	Newton's law of viscosity, Kinds of fluids, Nature of stress. Stress components in a real fluid,		
III	Symmetry of stress tensor, Transformation of stress components, Stress invariants, Relations		
	between Cartesian components of stress, Rate of strain quadric, Principal stresses, Stoke's law		
	of viscosity, Relations between stress and rate of strain.		
IV	General motion of a fluid elements, Navier-Stokes equations of motion, Steady viscous flow		
	between parallel planes. Steady flow through a tubes of uniform circular cross-sections.		
	Steady flow between concentric rotating cylinders, Diffusion of vorticity, Energy dissipation		
	due to viscosity, Reynold's number and its physical significance.		

1. J.K. Goyal and K.P. Gupta: Fluid Dynamics, Pragati Prakashan, Meerut, 2017

2. N. Curle and H. J. Davis: Modern Fluid Dynamics, D. Van Nostrand Company Ltd. London, 1968.

3. G.K. Batchelor: An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 2000

4. F. Chorlton: A Text Book of Fluid Dynamics, CBS Publishers and Distributors, New Delhi, 2002.

Internal Evaluation Methods (Max. Marks: 25)

As prescribed by the University (as per common ordinance for examination and assessment).

External Evaluation Methods (Max. Marks: 75)

FOURTH YEAR (SEMESTER-VIII) DISSERTATION/ RESEARCH PROJECT

Class: UG	Year: FOURTH	Semester: EIGHTH
Subject: MATHEMATICS		
Course Code: MAT- 411F	Course Title: DISSERTATION/RESEARCH PROJECT	
Credits:0+12	Core Compulsory	
Max. Marks: 100Min. Passing Marks: As per University CBCS Norm		: As per University CBCS Norm

Course Outcomes:

CO 1. The objective of course is to write a dissertation/research project on the specific topic.

CO 2. The student shall be able to do their research work in different interdisciplinary areas.

CO 3. After completing the course, the student shall be able to understand some advanced mathematical techniques.

Course prerequisites:

To study this course, a student must have passed Mathematics as Major Subject in UG Third Year Programme.

DISSERTATION/ RESEARCH PROJECT

Candidate/Students should write a dissertation/research project on the specific topic based on any one core/major papers opted by the student in any semester. The students has been allotted a supervisor in this dissertation/research project on their topic, given by the concern faculty. The dissertation/research project should be typed and its presentation on Power Point.

Evaluation Methods (Max. Marks: 100)