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Summary of Ph.D. work 
Design and development of catalyst is one of the important contemporary challenges in the 

context of energy and environment for catalytic reduction of proton/ CO2 or – a renewable 

and economical C1 feedstock – to high-value products and/or utilizable fuels (C. Hepburn 

and co-workers Nature, 2019, 575, 87-97). The alarming issue of escalating CO2 

concentration (>400 ppm) in the atmosphere and overconsumption of fossil fuels adds 

renewed relevance to the above challenge. Concerning this, Chemicaly/electrocatalytic 

proton/CO2 reduction strategy holds promise because of its suitability toward storing 

intermittent electrical energy and its modularity toward converting proton and CO2 to 

desirable products (such as H2, CO, HCO2H/HCO2
−, C2O4

2−, etc.) based on variables such 

as applied potential. Besides, a significant choice of relatively inexpensive and abundant 

first-row transition metals (e.g., Mn, Fe, Co, Ni) in combination with suitable ligands, is 

preferred over noble metal(e.g., Pt Re, Ru, Rh, Ir)-based counterparts, considering 

practicality and sustainability (S. L. Hooe and Co-workers ACS Catalysis,  2020, 10, 1146-

1151). My thesis work has been conceived with the above background to address the 

rational design of catalysts in the context of reduction of proton/ CO2 or – a renewable and 

economical C1 feedstock – to high-value products and/or utilizable fuels. 

 
1) A highly efficient homogeneous catalyst 

system for production of CH3OH from CO2 using 

single molecular defined Ruthenium and 

Rhodium RAPTA-type catalysts [Ru(g6-p-

cymene)X2(PTA)](X= I(1), Cl(2); PTA = 1,3,5-

triaza-7-phosphaadamantane) and rhodium 

catalysts [Rh(C5Me5)X2(PTA/PTA-BH3)] (X = 

Cl(3), H(4) and  PTA-BH3, H(5)  developed in 

acidic media under mild conditions. A TON of  

4752 Is achieved using a [Ru(-p-

cymene)I2(PTA)] catalyst which represents the 

first example of CO2 hydrogenation to CH3OH 

using single molecular defined Ru and Rh 

RAPTA-type catalysts.  

 

Figure 1. Plausible mechanism for the hydrogenation 

of CO2 catalyzed by the Ru [Ru(-p-cymene)I2(PTA)] 

[Rh(C5Me5)X2(PTA/PTA-BH3)]; Chem. 

Communication, 2020, 15, 904-919. 

2. A) Electrocatalytic CO2 Reduction with Half-

Sandwich Cobalt Catalyst: Selectivity towards 

CO 

We present herein for the first time a potentially active 

novel piano stool Cp*Co (III)-half-sandwich catalyst 

system after Artero‘s systems (J. Am. Chem. Soc. 2017, 

139, 3685) for electrocatalytic CO2 reduction for CO-



selectivity, as against HCO2H-selectivity (Artero‘s 

catalyst) in aqueous acetonitrile solution (Figure 1 A). In 

addition to an electron-donating Cp* ligand (Cp* = 

pentamethylcyclopentadienyl), the catalyst featured a 

proton-responsive pyridyl-benzimidazole-based N, N-

bidentate. Owing to the presence of a relatively electron-

rich Co center, the reduced Co(I)-state was made prone to 

activate the electrophilic carbon center of CO2. At the 

same time, the proton-responsive benzimidazole scaffold 

was susceptible to facilitate proton-transfer during the 

subsequent reduction of CO2. The above factors rendered 

the present catalyst active toward producing CO as the 

major product over the other potential 2e/2H+ reduced 

product HCOOH, in contrast to the only known similar 

half-sandwich CpCo(III)-based CO2-reduction catalysts 

which produced HCOOH selectively. This catalytic 

system exhibited Faradaic efficiency (FE) of ~70% while 

the overpotential for CO production was found to be 0.78 

V as determined by a controlled-potential electrolysis. 

 

 
Figure 2. [A] Artero Catalyst (J. Am. Chem. Soc. 

2017, 139, 36850); [B] this work ; Chem. Asian J., 

2020, 15, 904-919. 

 

c) Diiron Benzenedithiolate Complexes Relevant 

to the [FeFe] Hydrogenase Active Site 

Here (Figure 2), we demonstrated that the reaction of 

benzene dithiol with metal iron carbonyl [Fe3(CO)12] 

gives, Hexa carbonyl bridged benzdithiolate diiron, 

[Fe2(CO)6(μ-bdt)] precursor. Further, this [Fe2(CO)6(μ-

bdt)], the precursor was treated with phosphine ligands 

such as PPh3, PPh2Me, PPh2H  which are sigma donor and 

pi acceptor. Treatment of metal precursor, [Fe2(CO)6(μ-



bdt)] with these phosphine ligands yielded a series of both 

mono and disubstituted complexes; [Fe2(CO)5(μ-

bdt)(PPh3)] (1), [Fe2(CO)4(μ-bdt)(PPh3)2] (2), 

[Fe2(CO)5(μ- bdt)(PPh2Me)] (3) [Fe2(CO)4(μ-

bdt)(PPh2Me)2] (4), [Fe2(CO)5(μ-bdt)(PPh2H)] (5) and 

[Fe2(CO)4(μ-bdt)(PPh2H)2] (6). These complexes mimic 

the active site of [FeFe]hydrogenase and were 

investigated as a catalyst for proton reduction. Complexes 

1, 3, and 5 were found to be potentially active catalysts in 

electrocatalytic proton reduction in the presence of two 

distinct acids, HClO4, and CF3CO2H of varying 

strengths.

 

 

Figure 3.  Electrocatalytic proton reduction is shown 

by catalysts 1-3 from out of six synthesized catalysts.  

Eur. J. Inorg. Chem., 2015, 17, 2875-2882. 

 

d) Intramolecular stabilization of a catalytic [FeFe]-

hydrogenase mimic investigated by experiment and 

theory 

Here, we have designed and synthesized the mono-

substituted complex [Fe2(CO)5(μ-naphthalene-2-

thiolate)2(P(PhOMe-p)3)] taking after the structural 

principles from both [NiFe] and [FeFe]-hydrogenase 

enzymes. The bridging naphthalene thiolates in the 

synthesized complexes resemble μ-bridging cysteine 

amino acids of [NiFe] and [FeFe]-hydrogenase enzymes. 

However, one of the naphthyl moieties of this catalyst 

forms π–π stacking interactions with the terminal bulky 

phosphine ligand and was proofed from the crystal 

structure and DFT calculations. This interaction stabilizes 

the reduced and protonated forms of the catalyst during 

electrocatalytic proton reduction in the presence of acetic 

acid and hinders the rotation of the phosphine ligand. The 

intramolecular π–π stabilization, electrochemistry, and the 

mechanism of the hydrogen evolution reaction were 

investigated using computational approaches (Figure 

3).Moreover, this catalyst was investigated for 

electrocatalytic reduction of proton in different acid 

concentrations and was found active at low overpotential. 

 

 

(A)  

 

 

(B)  

 



Figure 4. [A] Active sites (‘H-cluster’) of the [FeFe]-

hydrogenase (top left) and the [NiFe]-hydrogenase (top 

right) enzymes. The [Fe2(CO)5(μ-naphthalene-2-

thiolate)2(P(PhOMe-p)3)] complex (below) takes up 

design principles from both catalytic centers. [B] catalyst 

demonstrated the π–π stabilization in DFT calculation. 

Dalton Trans., 2018, 47, 4941-4949. 

e) Complexes [Fe2(CO)5(m-pdt/Mebdt)(L)] 

Containing Chelating Diphosphine Ligand: 

Bioinspired [FeFe] Hydrogenase Model 

Complexes 

 

 

 

L=(Oxydi-2,1-phenylene)bis(diphenylphosphine) 

 

Figure 5. Catalyst 1-4 of [Fe2(CO)5(m-

pdt/Mebdt)(L)] and their catalysis on proton 

reduction, Chem. Select., 2016, 1, 5671–5678. 

In the same line, in the development of hydrogen-

generating catalysts, here we have tried to 

investigate the significant effect of a catalyst on 

the reduction potential of a proton by 

incorporating a large bite angle of bis phosphine 

ligand flanked with one oxygen atom. This 

motivation initiated our studies on the reaction of 

[Fe2(CO)6(m-pdt)] and [Fe2(CO)6(m-Mebdt)] with 

this chelating phosphine ligand. Moreover, the 

purpose of using this chelating phosphine ligand 

was to attach the phosphine ligand simultaneously 

to both the iron atoms or investigate the formation 

of the tetra-iron complex. Both the alkyl (pdt) and 

aromatic (Mebdt) dithiolate-bridged complexes 

were synthesized for comparison. The following 

diiron complexes, [Fe2(CO)5(m-pdt)(k1-L)] 1 and 

[Fe2(CO)5(m-Mebdt)(k1-L)] 3 were successfully  

investigated for electrocatalytic proton reduction. 

[Fe2(CO)5(m-pdt)(k1-LO)] 2 and [Fe2(CO)5(m-

Mebdt)(k1-LO)] 4 were obtained as mono-

oxidized side products during the synthesis of 1 

and 3.  

f) (i) ; Switching Site-Reactivity in Hydrogenase 

Model Systems by Introducing a Pendant Amine 

Ligand 

 

Here, two binuclear complexes [Fe2(CO)5(µ-

Mebdt)(P(PhOMe-p)3)] 1 and[Fe2(CO)5(µ-

Mebdt)(PPh2Py)] 2 were studied for their proton 

reduction activity using cyclic voltammetry 

technique. Through DFT studies the role of terminal 

phosphines ligands without/with pendant amines in 

influencing site reactivity during chemical (C) and 

electrochemical (E) steps of the catalytic cycle has 

been elucidated. Complex 1 witha P(PhOMe-p)3 

phosphine moiety (devoid of pendant amine 

group)showed a distal iron atom HER activity while 

for complex 2 with PPh2Pyphosphine substituent 

(with a pendant amine group), the pyridine nitrogen 

lone pair acted as the primary site for protonation 

with HER activity at the proximal iron atom.  

(a) 



(b)  

(c)  

 

 

(d)  

ACS Omega 2021, 6, 4192-420  

Figure 6; Here DFT study revealed that (b) and (c)  

demonstrated ECEC mechanism for acid-assisted 

proton reduction and in figure (d) demonstrated that 

Intramolecular proton transfer of the pyridinium 

proton from 2H– (left) to the proximal iron atom Fep 

to yield 2FeH– (right). This transfer is accompanied 

by a phosphine ligand rotation to bring the pyridine 

into the stacking position with Mebdt, and a pyridine 

ring rotation around the C2-C5 axis.  

ii) Synthesis and Electrocatalysis of Diiron 

Monothiolate Complexes: Small Molecule Mimics 

of the [FeFe]Hydrogenase Enzyme 

Here we have tried to synthesize monothiolate-

bridged complexes without a linker to explore the 

catalytic properties of catalyst for proton reduction. 

However, many dithiolate-bridged complexes 

mimicking the [FeFe] hydrogenase active site have 

been reported. Though complexes without linker 

bridging between the iron of the type [Fe2(m-

SR)2(CO)6] (R=any aromatic, an alkyl group) have 

been known since 1965, but systematic studies are 

yet to be required with these monothiolate-bridged 

complexes without a linker between the sulphur 

atoms. However, in such type of complexes homo-

association is significantly responsible for the 

stabilization of the anionic species generated during 

the two-electron reduction process. Besides, the 

starting neutral complex is recovered by repeating 

second re-oxidation at more positive potentials. This 

type of recovery has been reported for the [Fe2(m-

SEt)2(CO)6] complex as well. This is, however, not 

the case for most of the reported dithiolate-bridged 

complexes. Hence, to explore the chemistry of 

monothiolate-bridged molecules complexes [Fe2(m-

SCH2Ph)2(CO)6] 1 [Fe2(m-

SCH2Ph)2(CO)5(P(PhOMe-p)3)] 2 and [Fe2(m-

SEt)2(CO)5(P-(PhOMe-p)3)] 3 have been synthesized 

and investigated. The catalytic aspects of these 

complexes have been studied in the presence of 

acetic and trifluoroacetic acids and were found active 

toward proton reduction. 

 



 

Figure 7. Synthetic scheme of catalyst 2 and 3  

 

 

 

 

Figure 8. Catalyst 2 and 3 and their catalysis on 

proton reduction Chem. Select., 2017, 2, 1637–

1644. 
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