
Combinational Logic Circuits 

 

Unlike Sequential Logic Circuits whose outputs are dependant on both their present 

inputs and their previous output state giving them some form of Memory, the outputs of 

Combinational Logic Circuits are only determined by the logical function of their current input 

state, logic “0” or logic “1”, at any given instant in time. 

The result is that combinational logic circuits have no feedback, and any changes to the 

signals being applied to their inputs will immediately have an effect at the output. In other 

words, in a Combinational Logic Circuit, the output is dependant at all times on the combination 

of its inputs. So if one of its inputs condition changes state, from 0-1 or 1-0, so too will the 

resulting output as by default combinational logic circuits have “no memory”, “timing” or 

“feedback loops” within their design. 

 

 

Combinational Logic Circuits are made up from basic logic NAND, NOR or NOT gates that are 

“combined” or connected together to produce more complicated switching circuits. These logic 

gates are the building blocks of Combinational Logic Circuits circuits. An example of a 

combinational circuit is a decoder, which converts the binary code data present at its input into 

a number of different output lines, one at a time producing an equivalent decimal code at its 

output.Combinational logic circuits can be very simple or very complicated and any 

combinational circuit can be implemented with only NAND and NOR gates as these are classed 

as “universal” gates.The three main ways of specifying the function of a combinational logic 

circuit are: 

    1. Boolean Algebra – This forms the algebraic expression showing the operation of the logic 

circuit for each input variable either True or False that results in a logic “1” output. 

    2. Truth Table – A truth table defines the function of a logic gate by providing a concise list 

that shows all the output states in tabular form for each possible combination of input variable 

that the gate could encounter. 



    3. Logic Diagram – This is a graphical representation of a logic circuit that shows the wiring 

and connections of each individual logic gate, represented by a specific graphical symbol, that 

implements the logic circuit and all three of these logic circuit representations are shown 

below. 

 

 

As combinational logic circuits are made up from individual logic gates only, they can also be 

considered as “decision making circuits” and combinational logic is about combining logic gates 

together to process two or more signals in order to produce at least one output signal 

according to the logical function of each logic gate. Common combinational circuits made up 

from individual logic gates that carry out a desired application include Multiplexers, De-

multiplexers, Encoders, Decoders, Full and Half Adders etc. 

Classification of Combinational Logic 

One of the most common uses of combinational logic is in Multiplexer and De-multiplexer type 

circuits. Here, multiple inputs or outputs are connected to a common signal line and logic gates 

are used to decode an address to select a single data input or output switch. A multiplexer 

consist of two separate components, a logic decoder and some solid state switches, but before 

we can discuss multiplexers, decoders and de-multiplexers in more detail we first need to 

understand how these devices use these “solid state switches” in their design. 



 

 

 

Solid State Switches 

Standard TTL logic devices made up from Transistors can only pass signal currents in one 

direction only making them “uni-directional” devices and poor imitations of conventional 

electro-mechanical switches or relays. However, some CMOS switching devices made up from 

FET’s act as near perfect “bi-directional” switches making them ideal for use as solid state 

switches. Solid state switches come in a variety of different types and ratings, and there are 

many different applications for using solid state switches. They can basically be sub-divided into 

3 different main groups for switching applications and in this combinational logic section we 

will only look at the Analogue type of switch but the principal is the same for all types including 

digital. 

Solid State Switch Applications 

    • Analogue Switches – Used in Data Switching and Communications, Video and Audio Signal 

Switching, Instrumentation and Process Control Circuits …etc. 

    • Digital Switches – High Speed Data Transmission, Switching and Signal Routing, Ethernet, 

LAN’s, USB and Serial Transmissions …etc. 

    • Power Switches – Power Supplies and General “Standby Power” Switching Applications, 

Switching of Larger Voltages and Currents …etc. 



Combinational Logic Summary 

To summarize, Combinational Logic Circuits consist of inputs, two or more basic logic 

gates and outputs. The logic gates are combined in such a way that the output state depends 

entirely on the input states. Combinational logic circuits have “no memory”, “timing” or 

“feedback loops”, there operation is instantaneous. A combinational logic circuit performs an 

operation assigned logically by a Boolean expression or truth table.Examples of common 

Combinational Logic Circuits include: half adders, full adders, multiplexers, demultiplexers, 

encoders and decoders. 

The Binary Adder 

Another common and very useful combinational logic circuit which can be constructed 

using just a few basic logic gates and adds together binary numbers is the Binary Adder circuit. 

The Binary Adder is made up from standard AND and Ex-OR gates and allow us to “add” 

together single bit binary numbers, a and b to produce two outputs called the addition and a 

CARRY called the Carry-out, ( C out ) bit. One of the main uses for the Binary Adder is in 

arithmetic and counting circuits. 

Consider the addition of two denary (base 10) numbers below. 

 123 A (Augend) 

+ 789    B    (Addend) 

912 SUM 
 

Each column is added together starting from the right hand side and each digit has a weighted 

value depending upon its position in the columns. As each column is added together a carry is 

generated if the result is greater or equal to ten, the base number. This carry is then added to 

the result of the addition of the next column to the left and so on, simple school math’s 

addition. The adding of binary numbers is basically the same as that of adding decimal numbers 

but this time a carry is only generated when the result in any column is greater or equal to “2”, 

the base number of binary. 

Binary Addition 

Binary Addition follows the same basic rules as for the denary addition above except in binary 

there are only two digits and the largest digit is “1”, so any “SUM” greater than 1 will result in a 

“CARRY”. This carry 1 is passed over to the next column for addition and so on. Consider the 

single bit addition below. 



   0     0    1    1 

+ 0  + 1 + 0 + 1 

0     1    1  10 

The single bits are added together and “0 + 0″, “0 + 1″, or “1 + 0″ results in a sum of “0” or “1” 

until you get to “1 + 1″ then the sum is equal to “2”, (a zero plus a carry). For a simple 1-bit 

addition problem like this, the resulting carry bit could be ignored which would result in an 

output truth table resembling that of an Ex-OR Gate as seen in the Logic Gates section and 

whose result is the sum of the two bits but without the carry. An Ex-OR gate only produces an 

output “1” when either input is at logic “1”, but not both. However, all microprocessors and 

electronic calculators require the carry bit to correctly calculate the equations so we need to 

rewrite them to include 2 bits of output data as shown below. 

   00    00    01    01 

+ 00 + 01 + 00 + 01 

   00   01    01   10 

From the above equations we know that an Ex-OR gate will only produce an output “1” 

when “EITHER” input is at logic “1”, so we need an additional output to produce a carry output, 

“1” when “BOTH” inputs “A” and “B” are at logic “1” and a standard AND Gate fits the bill 

nicely. By combining the Ex-OR gate with the AND gate results in a simple digital binary adder 

circuit known commonly as the “Half Adder” circuit. 

The Half Adder Circuit 

1-bit Adder with Carry-Out 

Symbol Truth Table 

 

A B SUM CARRY 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

Boolean Expression: Sum = A ⊕ B    Carry = A . B 

 



From the truth table we can see that the SUM (S) output is the result of the Ex-OR gate 

and the Carry-out (Cout) is the result of the AND gate. One major disadvantage of the Half 

Adder circuit when used as a binary adder, is that there is no provision for a “Carry-in” from the 

previous circuit when adding together multiple data bits. For example, suppose we want to add 

together two 8-bit bytes of data, any resulting carry bit would need to be able to “ripple” or 

move across the bit patterns starting from the least significant bit (LSB). The most complicated 

operation the half adder can do is “1 + 1″ but as the half adder has no carry input the resultant 

added value would be incorrect. One simple way to overcome this problem is to use a Full 

Adder type binary adder circuit. 

The Full Adder Circuit 

The main difference between the Full Adder and the previous seen Half Adder is that a 

full adder has three inputs, the same two single bit binary inputs A and B as before plus an 

additional Carry-In (C-in) input as shown below. 

Full Adder with Carry-In 

                             Symbol                  Truth Table 

 

A B C-in Sum C-out 

0 0 0 0 0 

0 1 0 1 0 

1 0 0 1 0 

1 1 0 0 1 

0 0 1 1 0 

0 1 1 0 1 

1 0 1 0 1 

1 1 1 1 1 

Boolean Expression: Sum = A ⊕ B ⊕ C-in 

 

The 1-bit Full Adder circuit above is basically two half adders connected together and 

consists of three Ex-OR gates, two AND gates and an OR gate, six logic gates in total. The truth 

table for the full adder includes an additional column to take into account the Carry-in input as 

well as the summed output and carry-output. 4-bit full adder circuits are available as standard 

IC packages in the form of the TTL 74LS83 or the 74LS283 which can add together two 4-bit 

binary numbers and generate a SUM and a CARRY output. But what if we wanted to add 

together two n-bit numbers, then n 1-bit full adders need to be connected together to produce 

what is known as the Ripple Carry Adder. 



Ripple Carry Adder 

The Ripple Carry Binary Adder is simply n, full adders cascaded together with each full 

adder represents a single weighted column in the long addition with the carry signals producing 

a “ripple” effect through the binary adder from right to left. For example, suppose we want to 

“add” together two 4-bit numbers, the two outputs of the first full adder will provide the first 

place digit sum of the addition plus a carry-out bit that acts as the carry-in digit of the next 

binary adder. The second binary adder in the chain also produces a summed output (the 2nd 

bit) plus another carry-out bit and we can keep adding more full adders to the combination to 

add larger numbers, linking the carry bit output from the first full binary adder to the next full 

adder, and so forth. An example of a 4-bit adder is given below. 

 

Major drawback of “cascading” together 1-bit binary adders to add large binary 

numbers is that if inputs A and B change, the sum at its output will not be valid until any carry-

input has “rippled” through every full adder in the chain. Consequently, there will be a finite 

delay before the output of a adder responds to a change in its inputs resulting in the 

accumulated delay, especially in large multi-bit binary adders, becoming prohibitively large. 

This unwanted delay time is called Propagation delay. Also another problem called “overflow” 

occurs when an n-bit adder adds two numbers together whose sum is greater than or equal to 

2n.  One solution is to generate the carry-input signals directly from the A and B inputs rather 

than using the ripple arrangement above. This then produces another type of binary adder 

circuit called a Carry Look Ahead Binary Adder were the speed of the parallel adder can be 

greatly improved using carry-look ahead logic. 

 

 



 4-bit Binary Subtractor 

Now that we know how to “ADD” together two 4-bit binary numbers how would we 

subtract two 4-bit binary numbers, for example, A – B using the circuit above. The answer is to 

use 2’s-complement notation on all the bits in B must be complemented (inverted) and an extra 

one added using the carry-input. This can be achieved by inverting each B input bit to the binary 

subtractor by using an inverter or NOT-gate on each input. Also, in the above circuit for the 4-

bit binary adder, to perform addition the first carry-in input is held LOW at logic “0”. But for the 

circuit to perform the mathematical condition of subtraction this input pin needs to be held 

HIGH at logic “1”. With this in mind a ripple carry adder can with a small modification be used 

to perform half subtraction, full subtraction and/or comparison. There are a number of 4-bit 

full-adder ICs available such as the 74LS283 and CD4008. which will add two 4-bit binary 

number and provide an additional input carry bit, as well as an output carry bit, so you can 

cascade them together to produce 8-bit, 12-bit, 16-bit, etc. adders. 

 

 

 

Binary Decoder  

The Binary Decoder is another combinational logic circuit constructed from individual logic 

gates and is the exact opposite to that of an “Encoder” we looked at in the last tutorial. The 

name “Decoder” means to translate or decode coded information from one format into 

another, so a digital decoder transforms a set of digital input signals into an equivalent decimal 

code at its output. Binary Decoders are another type of Digital Logic device that has inputs of 2-

bit, 3-bit or 4-bit codes depending upon the number of data input lines, so a decoder that has a 

set of two or more bits will be defined as having an n-bit code, and therefore it will be possible 

to represent 2n possible values. Thus, a decoder generally decodes a binary value into a non-

binary one by setting exactly one of its n outputs to logic “1”. If a binary decoder receives n 



inputs (usually grouped as a single Binary or Boolean number) it activates one and only one of 

its 2n outputs based on that input with all other outputs deactivated. 

 

For example, an inverter ( NOT-gate ) can be classed as a 1-to-2 binary decoder as 1-

input and 2-outputs (21) is possible because with an input A it can produce two outputs A and A 

(not-A) as shown. Then we can say that a standard combinational logic decoder is an n-to-m 

decoder, where m ≤ 2n, and whose output, Q is dependent only on its present input states. In 

other words, a binary decoder looks at its current inputs, determines which binary code or 

binary number is present at its inputs and selects the appropriate output that corresponds to 

that binary input. 

A Binary Decoder converts coded inputs into coded outputs, where the input and output 

codes are different and decoders are available to “decode” either a Binary or BCD (8421 code) 

input pattern to typically a Decimal output code. Commonly available BCD-to-Decimal decoders 

include the TTL 7442 or the CMOS 4028. Generally a decoders output code normally has more 

bits than its input code and practical “binary decoder” circuits include, 2-to-4, 3-to-8 and 4-to-

16 line configurations. An example of a 2-to-4 line decoder along with its truth table is given 

below. 

 

 

 



 

This is a simple example of 2-to-4 line binary decoder consisting of an array of four AND 

gates. The 2 binary inputs labelled A and B are decoded into one of 4 outputs, hence the 

description of 2-to-4 binary decoder. Each output represents one of the miniterms of the 2 

input variables, (each output = a minterm). The binary inputs A and B determine which output 

line from Q0 to Q3 is “HIGH” at logic level “1” while the remaining outputs are held “LOW” at 

logic “0” so only one output can be active (HIGH) at any one time. Therefore, whichever output 

line is “HIGH” identifies the binary code present at the input, in other words it “de-codes” the 

binary input.  Some binary decoders have an additional input pin labelled “Enable” that controls 

the outputs from the device. This extra input allows the decoders outputs to be turned “ON” or 

“OFF” as required. These types of binary decoders are commonly used as “memory address 

decoders” in microprocessor memory applications.  

We can say that a binary decoder is a demultiplexer with an additional data line that is 

used to enable the decoder. An alternative way of looking at the decoder circuit is to regard 

inputs A, B and C as address signals. Each combination of A, B or C defines a unique memory 

address. 

 

We have seen that a 2-to-4 line binary decoder (TTL 74155) can be used for decoding 

any 2-bit binary code to provide four outputs, one for each possible input combination. 

However, sometimes it is required to have a Binary Decoder with a number of outputs greater 

than is available, so by adding more inputs, the decoder can potentially provide 2n more 

outputs. 

For example, a decoder with 3 binary inputs ( n = 3 ), would produce a 3-to-8 line 

decoder (TTL 74138) and 4 inputs ( n = 4 ) would produce a 4-to-16 line decoder (TTL 74154) 



and so on. But a decoder can also have less than 2n outputs such as the BCD to seven-segment 

decoder (TTL 7447) which has 4 inputs and only 7 active outputs to drive a display rather than 

the full 16 (24) outputs as you would expect. Here a much larger 4 (3 data plus 1 enable) to 16 

line binary decoder has been implemented using two smaller 3-to-8 decoders. 

 

Inputs A, B, C are used to select which output on either decoder will be at logic “1” (HIGH) and 

input D is used with the enable input to select which encoder either the first or second will 

output the “1”. However, there is a limit to the number of inputs that can be used for one 

particular decoder, because as n increases, the number of AND gates required to produce an 

output also becomes larger resulting in the fan-out of the gates used to drive them becoming 

large. This type of active-“HIGH” decoder can be implemented using just Inverters, ( NOT Gates 

) and AND gates. It is convenient to use an AND gate as the basic decoding element for the 

output because it produces a “HIGH” or logic “1” output only when all of its inputs are logic “1”. 

But some binary decoders are constructed using NAND gates instead of AND gates for their 

decoded output, since NAND gates are cheaper to produce than AND’s as they require fewer 

transistors to implement within their design.  The use of NAND gates as the decoding element, 

results in an active-“LOW” output while the rest will be “HIGH”. As a NAND gate produces the 

AND operation with an inverted output, the NAND decoder looks like this with its inverted truth 

table. 

 

 



 

The Digital Comparator 

Another common and very useful combinational logic circuit is that of the Digital 

Comparator circuit. Digital or Binary Comparators are made up from standard AND, NOR and 

NOT gates that compare the digital signals present at their input terminals and produce an 

output depending upon the condition of those inputs. For example, along with being able to 

add and subtract binary numbers we need to be able to compare them and determine whether 

the value of input A is greater than, smaller than or equal to the value at input B etc. The digital 

comparator accomplishes this using several logic gates that operate on the principles of 

Boolean Algebra. There are two main types of Digital Comparator available and these are 

    1. Identity Comparator – an Identity Comparator is a digital comparator that has only one 

output terminal for when A = B either “HIGH”  A = B = 1 or “LOW”  A = B = 0 

    2. Magnitude Comparator – a Magnitude Comparator is a type of digital comparator that has 

three output terminals, one each for equality, A = B  greater than, A > B  and less than A < B 

The purpose of a Digital Comparator is to compare a set of variables or unknown numbers, for 

example A (A1, A2, A3, …. An, etc) against that of a constant or unknown value such as B (B1, 

B2, B3, …. Bn, etc) and produce an output condition or flag depending upon the result of the 

comparison. For example, a magnitude comparator of two 1-bits, (A and B) inputs would 

produce the following three output conditions when compared to each other. 

A>B, A=B , A<B 

Which means:  A is greater than B,  A is equal to B,  and A is less than B. This is useful if we want 

to compare two variables and want to produce an output when any of the above three 

conditions are achieved. For example, produce an output from a counter when a certain count 

number is reached. Consider the simple 1-bit comparator below. 

 

 



 

Truth Table 

 

Inputs Outputs 

B A A > B A = B A < B 

0 0 0 1 0 

0 1 1 0 0 

1 0 0 0 1 

1 1 0 1 0 

 

You may notice two distinct features about the comparator from the above truth table. 

Firstly, the circuit does not distinguish between either two “0” or two “1”‘s as an output A = B is 

produced when they are both equal, either A = B = “0” or A = B = “1”. Secondly, the output 

condition for A = B resembles that of a commonly available logic gate, the Exclusive-NOR or Ex-

NOR function (equivalence) on each of the n-bits giving: Q = A ⊕ B  

Digital comparators actually use Exclusive-NOR gates within their design for comparing 

their respective pairs of bits. When we are comparing two binary or BCD values or variables 

against each other, we are comparing the “magnitude” of these values, a logic “0” against a 

logic “1” which is where the term Magnitude Comparator comes from. As well as comparing 

individual bits, we can design larger bit comparators by cascading together n of these and 

produce a n-bit comparator just as we did for the n-bit adder in the previous tutorial. Multi-bit 

comparators can be constructed to compare whole binary or BCD words to produce an output 

if one word is larger, equal to or less than the other. A very good example of this is the 4-bit 

Magnitude Comparator. Here, two 4-bit words (“nibbles”) are compared to each other to 

produce the relevant output with one word connected to inputs A and the other to be 

compared against connected to input B as shown below. 

 



 

 

Some commercially available digital comparators such as the TTL 74LS85 or CMOS 4063 

4-bit magnitude comparator have additional input terminals that allow more individual 

comparators to be “cascaded” together to compare words larger than 4-bits with magnitude 

comparators of “n”-bits being produced. These cascading inputs are connected directly to the 

corresponding outputs of the previous comparator as shown to compare 8, 16 or even 32-bit 

words. 

The Digital Encoder 

Unlike a multiplexer that selects one individual data input line and then sends that data 

to a single output line or switch, a Digital Encoder more commonly called a Binary Encoder 

takes ALL its data inputs one at a time and then converts them into a single encoded output. So 

we can say that a binary encoder, is a multi-input combinational logic circuit that converts the 

logic level “1” data at its inputs into an equivalent binary code at its output. Generally, digital 

encoders produce outputs of 2-bit, 3-bit or 4-bit codes depending upon the number of data 

input lines. An “n-bit” binary encoder has 2n input lines and n-bit output lines with common 

types that include 4-to-2, 8-to-3 and 16-to-4 line configurations. The output lines of a digital 

encoder generate the binary equivalent of the input line whose value is equal to “1” and are 

available to encode either a decimal or hexadecimal input pattern to typically a binary or 

“B.C.D” (binary coded decimal) output code. 

4-to-2 Bit Binary Encoder 

 

 

One of the main disadvantages of standard digital encoders is that they can generate 

the wrong output code when there is more than one input present at logic level “1”. For 

example, if we make inputs D1 and D2 HIGH at logic “1” both at the same time, the resulting 



output is neither at “01” or at “10” but will be at “11” which is an output binary number that is 

different to the actual input present. Also, an output code of all logic “0”s can be generated 

when all of its inputs are at “0” OR when input D0 is equal to one. One simple way to overcome 

this problem is to “Prioritise” the level of each input pin and if there was more than one input 

at logic level “1” the actual output code would only correspond to the input with the highest 

designated priority. Then this type of digital encoder is known commonly as a Priority Encoder 

or P-encoder. 

Priority Encoder 

The Priority Encoder solves the problems mentioned above by allocating a priority level 

to each input. The priority encoders output corresponds to the currently active input which has 

the highest priority. So when an input with a higher priority is present, all other inputs with a 

lower priority will be ignored. The priority encoder comes in many different forms with an 

example of an 8-input priority encoder along with its truth table shown below. 

 

 

Priority encoders are available in standard IC form and the TTL 74LS148 is an 8-to-3 bit priority 

encoder which has eight active LOW (logic “0”) inputs and provides a 3-bit code of the highest 

ranked input at its output. Priority encoders output the highest order input first for example, if 

input lines “D2“, “D3” and “D5” are applied simultaneously the output code would be for input 

“D5” (“101″) as this has the highest order out of the 3 inputs. Once input “D5” had been 

removed the next highest output code would be for input “D3” (“011″), and so on.   The truth 

table for a 8-to-3 bit priority encoder is given as: 

 

 

 



Digital Inputs Binary Output 

D7 D6 D5 D4 D3 D2 D1 D0 Q2 Q1 Q0 

0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 X 0 0 1 

0 0 0 0 0 1 X X 0 1 0 

0 0 0 0 1 X X X 0 1 1 

0 0 0 1 X X X X 1 0 0 

0 0 1 X X X X X 1 0 1 

0 1 X X X X X X 1 1 0 

1 X X X X X X X 1 1 1 

 

From this truth table, the Boolean expression for the encoder above with inputs D0 to 

D7 and outputs Q0, Q1, Q2 is given as: 

Output Q0 

 

 

Output Q1   

 

 

 



Output Q2  

 

Then the final Boolean expression for the priority encoder including the zero inputs is defined 

as: 

 

In practice these zero inputs would be ignored allowing the implementation of the final 

Boolean expression for the outputs of the 8-to-3 priority encoder above to be constructed using 

individual OR gates as follows. 

Digital Encoder using Logic Gates 

 

 

 

 

 

 



The Multiplexer (MUX) 

Multiplexing is the generic term used to describe the operation of sending one or more 

analogue or digital signals over a common transmission line at different times or speeds and as 

such, the device we use to do just that is called a Multiplexer.  The multiplexer, shortened to 

“MUX” or “MPX”, is a combinational logic circuit designed to switch one of several input lines 

through to a single common output line by the application of a control signal. Multiplexers 

operate like very fast acting multiple position rotary switches connecting or controlling multiple 

input lines called “channels” one at a time to the output. Multiplexers, or MUX’s, can be either 

digital circuits made from high speed logic gates used to switch digital or binary data or they 

can be analogue types using transistors, MOSFET’s or relays to switch one of the voltage or 

current inputs through to a single output. 

The most basic type of multiplexer device is a one-way rotary switch as shown below. 

 

 

The rotary switch, also called a wafer switch as each layer of the switch is known as a 

wafer, is a mechanical device whose input is selected by rotating a shaft. In other words, the 

rotary switch is a manual switch that you can use to select individual data or signal lines simply 

by turning its inputs “ON” or “OFF”. So how can we select each data input automatically using a 

digital device. In digital electronics, multiplexers are also known as data selectors because they 

can “select” each input line, are constructed from individual Analogue Switches encased in a 

single IC package as opposed to the “mechanical” type selectors such as normal conventional 

switches and relays. They are used as one method of reducing the number of logic gates 

required in a circuit design or when a single data line or data bus is required to carry two or 

more different digital signals. For example, a single 8-channel multiplexer. 

Generally, the selection of each input line in a multiplexer is controlled by an additional 

set of inputs called control lines and according to the binary condition of these control inputs, 

either “HIGH” or “LOW” the appropriate data input is connected directly to the output. 



Normally, a multiplexer has an even number of 2N data input lines and a number of “control” 

inputs that correspond with the number of data inputs. Note that multiplexers are different in 

operation to Encoders. Encoders are able to switch an n-bit input pattern to multiple output 

lines that represent the binary coded (BCD) output equivalent of the active input. 

 

 

 

The input A of this simple 2-1 line multiplexer circuit constructed from standard NAND 

gates acts to control which input ( I0 or I1 ) gets passed to the output at Q. 

From the truth table we can see that when data select input, A is LOW (logic 0), input I1 passes 

its data to the output while input I0 is blocked. When data select A is HIGH (logic 1), input I0 is 

passed to Q while input I0 is blocked. So by the application of either a logic “0” or a logic “1” at 

A we can select the appropriate input with the circuit acting a bit like a single pole double throw 

(SPDT) switch. Then in this simple example, the 2-input multiplexer connects one of two 1-bit 

sources to a common output, producing a 2-to-1-line multiplexer and we can confirm this in the 

following Boolean expression. 

Q = A.I0.I1 + A.I0.I1 + A.I0.I1 + A.I0.I1 

and for our 2-input multiplexer circuit above, this can be simplified too: 

Q = A.I1 + A.I0 



We can build a simple 2-line to 1-line (2-to-1) multiplexer from basic logic NAND gates 

as shown.We can increase the number of data inputs to be selected further simply by following 

the same procedure and larger multiplexer circuits can be implemented using smaller 2-to-1 

multiplexers as their basic building blocks. So for a 4-input multiplexer we would therefore 

require two data select lines as 4-inputs represents 22 data control lines give a circuit with four 

inputs, I0, I1, I2, I3 and two data select lines A and B as shown. 

 

 

 

The Boolean expression for this 4-to-1 Multiplexer above with inputs A to D and data select 

lines a, b is given as: 

Q = abA + abB + abC + abD 

In this example at any one instant in time only ONE of the four analogue switches is closed, 

connecting only one of the input lines A to D to the single output at Q. As to which switch is 



closed depends upon the addressing input code on lines “a” and “b“, so for this example to 

select input B to the output at Q, the binary input address would need to be “a” = logic “1” and 

“b” = logic “0”. 

Then we can show the selection of the data through the multiplexer as a function of the data 

select bits as shown. 

 

 

Adding more control address lines will allow the multiplexer to control more inputs but each 

control line configuration will connect only ONE input to the output. Then the implementation 

of the Boolean expression above using individual logic gates would require the use of seven 

individual gates consisting of AND, OR and NOT gates as shown 

 

 

 

 

 



Multiplexer Symbol 

 

 

 

The Demultiplexer 

The data distributor, known more commonly as a Demultiplexer or “Demux” for short, is 

the exact opposite of the Multiplexer we saw in the previous tutorial. The demultiplexer takes 

one single input data line and then switches it to any one of a number of individual output lines 

one at a time. The demultiplexer converts a serial data signal at the input to a parallel data at its 

output lines as shown below. 

1-to-4 Channel De-multiplexer 

 

Output Select Data Output 

Selected b a 

0 0 A 

0 1 B 

1 0 C 

1 1 D 

 



The Boolean expression for this 1-to-4 Demultiplexer above with outputs A to D and 

data select lines a, b is given as: 

                                       F = a’b’A + a’bB + ab’C + abD 

The function of the Demultiplexer is to switch one common data input line to any one of 

the 4 output data lines A to D in our example above. As with the multiplexer the individual solid 

state switches are selected by the binary input address code on the output select pins “a” and 

“b” as shown. 

 

As with the previous multiplexer circuit, adding more address line inputs it is possible to switch 

more outputs giving a 1-to-2n data line outputs. 

Some standard demultiplexer IC´s also have an additional “enable output” pin which disables or 

prevents the input from being passed to the selected output. Also some have latches built into 

their outputs to maintain the output logic level after the address inputs have been changed. 

However, in standard decoder type circuits the address input will determine which single data 

output will have the same value as the data input with all other data outputs having the value 

of logic “0”. 

The implementation of the Boolean expression above using individual logic gates would require 

the use of six individual gates consisting of AND and NOT gates as shown. 

http://www.electronics-tutorials.ws/combination/comb_2.html


 

The Demultiplexer Symbol 

 

Exercise 

1. Explain the function of parallel adder, parallel subtractor with suitable logic diagram. 

2. Design the logical circuit for decimal to binary encoder. 

3. Design the logical circuit for binary to decimal decoder. 

4. Design a full adder using MUX 

5. Give the application of MUX & DEMUX. 

 

 

 

 


